2,793 research outputs found
CW and pulsed electrically detected magnetic resonance spectroscopy at 263 GHz/12 T on operating amorphous silicon solar cells
Here we describe a new high frequency/high field continuous wave and pulsed
electrically detected magnetic resonance (CW EDMR and pEDMR) setup, operating
at 263 GHz and resonance fields between 0 and 12 T. Spin dependent transport in
illuminated hydrogenated amorphous silicon p-i-n solar cells at 5 K and 90 K
was studied by in operando 263 GHz CW and pEDMR alongside with complementary
X-band CW EDMR. Benefiting from the superior resolution at 263 GHz, we were
able to better resolve EDMR signals originating from spin dependent hopping and
recombination processes. 5 K EDMR spectra were found to be dominated by
conduction and valence band tale states involved in spin dependent hopping,
with additional contributions from triplet exciton states. 90 K EDMR spectra
could be assigned to spin pair recombination involving conduction band tail
states and dangling bonds as dominating spin dependent transport process, with
additional contributions from valence band tail and triplet exciton states.Comment: 8 pages, 4 figure
Charge-noise-free Lateral Quantum Dot Devices with Undoped Si/SiGe Wafer
We develop quantum dots in a single layered MOS structure using an undoped
Si/SiGe wafer. By applying a positive bias on the surface gates, electrons are
accumulated in the Si channel. Clear Coulomb diamond and double dot charge
stability diagrams are measured. The temporal fluctuation of the current is
traced, to which we apply the Fourier transform analysis. The power spectrum of
the noise signal is inversely proportional to the frequency, and is different
from the inversely quadratic behavior known for quantum dots made in doped
wafers. Our results indicate that the source of charge noise for the doped
wafers is related to the 2DEG dopant.Comment: Proceedings of the 12th Asia Pacific Physics Conferenc
Engineering a microbiosphere to clean up the ocean – inspiration from the plastisphere
Plastic is a ubiquitous material that has become an essential part of our lives. More than one hundred million tons of plastic has accumulated in the world’s oceans as a result of poor waste management. This plastic waste gradually fragments into smaller pieces known as microplastics and nanoplastics. These small plastic particles can cause significant damage to marine ecosystems, and negatively impact human health. According to a recent review of international patents, the majority of ocean-cleaning inventions are limited to microplastics larger than 20 μm. Furthermore, such technologies are ineffective for nanoplastics, which measure less than 1000 nm, or even fibrous plastics. Alternative solutions need to be considered for the large-scale in situ removal of microplastics and nanoplastics from the ocean. In this perspective, we present the concept of engineering a microbial ecosystem, which we term the microbiosphere. The concept is based on key observations that have been made for natural plastic-based ecosystems known as plastispheres. These observations relate to the solid support material, self-sustainability, attachment to plastic, degradation of plastic, and risk of pathogenicity. Inspiration can be taken from the plastisphere whereby a novel microbial ecosystem could be designed and engineered as a bioremediation tool to rid the ocean of micro- and nanoplastics. Such an engineered system could outcompete pathogens for marine plastic waste and potentially reduce the risk of infectious diseases
Sonographic fetal biometry charts for a Pakistani cohort.
This study aimed to develop growth centiles at different gestational weeks for fetal biparietal diameter, abdominal circumference, femur length and head circumference in a Pakistani cohort. Data were collected at a tertiary referral hospital from pregnant women at gestational ages 13-40 weeks referred for obstetric ultrasound as a part of routine antenatal care. A total of 1599 fetal sonographic biometric measurements were collected after screening for the inclusion criteria. For each measurement, separate regression models were derived to estimate the mean, standard deviation and reference percentiles at each week of gestational age for this cohort. The best fitting model for each variable was selected. These charts will help radiologists and clinicians in predicting dates of delivery, assessing fetal growth and identifying intrauterine fetal insufficiency in the Pakistani population
Histone H4 lysine 16 acetylation controls central carbon metabolism and diet-induced obesity in mice
Noncommunicable diseases (NCDs) account for over 70% of deaths world-wide. Previous work has linked NCDs such as type 2 diabetes (T2D) to disruption of chromatin regulators. However, the exact molecular origins of these chronic conditions remain elusive. Here, we identify the H4 lysine 16 acetyltransferase MOF as a critical regulator of central carbon metabolism. High-throughput metabolomics unveil a systemic amino acid and carbohydrate imbalance in Mof deficient mice, manifesting in T2D predisposition. Oral glucose tolerance testing (OGTT) reveals defects in glucose assimilation and insulin secretion in these animals. Furthermore, Mof deficient mice are resistant to diet-induced fat gain due to defects in glucose uptake in adipose tissue. MOF-mediated H4K16ac deposition controls expression of the master regulator of glucose metabolism, Pparg and the entire downstream transcriptional network. Glucose uptake and lipid storage can be reconstituted in MOF-depleted adipocytes in vitro by ectopic Glut4 expression, PPARγ agonist thiazolidinedione (TZD) treatment or SIRT1 inhibition. Hence, chronic imbalance in H4K16ac promotes a destabilisation of metabolism triggering the development of a metabolic disorder, and its maintenance provides an unprecedented regulatory epigenetic mechanism controlling diet-induced obesity
The evaluation of hepatocellular carcinoma with biphasic contrast enhanced helical CT scan
Objective: To evaluate the role of biphasic contrast-enhanced helical CT including Hepatic Arterial Phase (HAP) imaging with Portal Venous Phase (PVP) imaging, in the detection and characterization of hepatocellular carcinomas.Methods: The study included 40 patients (M = 26, F = 14) with histopathologically proven HCC. Age range was between 30-85 years (mean = 55) by following consecutive patients with cirrhosis in whom Hepatocellular carcinoma was diagnosed or suspected either by raised serum a (alpha)-fetoprotein level or Ultrasound.Results: Biphasic contrast-enhanced examination revealed a total of 85 lesions in these 40 patients, out of which 13 were unifocal, 12 showed a dominant mass with satellite lesions, 2 showed cluster of contiguous nodules and 13 were multifocal HCCs. Mean diameter was 3.1 cm, ranging from 0.8 to 14 cm. On HAP imaging 85% were detected. (hyperattenuating = 69, hypoattenuating = 3) while on PVP imaging detectibility was only 48% (hyperattenuating = 2, hypoattenuating = 39). Hence detectibility was significantly (p = 0.008) superior in HAP as compared to PVP imaging. In 7 patients (17%) tumor was visible only on HAP images. Venous invasion was present in 12 patients (30%) while arterio-portal shunting was seen in 5 patients (13%).CONCLUSION: Biphasic contrast enhanced helical CT is a useful method in detection and characterization of HCC
Pyrido- and benzisothiazolones as inhibitors of histone acetyltransferases (HATs)
Histone acetyltransferases (HATs) are interesting targets for the treatment of cancer and HIV infections but reports on selective inhibitors are very limited. Here we report structure–activity studies of pyrido- and benzisothiazolones in the in vitro inhibition of histone acetyltransferases, namely PCAF, CBP, Gcn5 and p300 using a heterogeneous assay with antibody mediated quantitation of the acetylation of a peptidic substrate. Dependent on the chemical structure distinct subtype selectivity profiles can be obtained. While N-aryl derivatives usually are rather pan-HAT inhibitors, N-alkyl derivatives show mostly a preference for CBP/p300. Selected compounds were also shown to be inhibitors of MOF. The best inhibitors show submicromolar inhibition of CBP. Selected compounds affect growth of HL-60 leukemic cells and LNCaP prostate carcinoma cells with higher potency on the leukemic cells. Target engagement was shown with reduction of histone acetylation in LNCaP cells
Direct Selective Laser Sintering of Tool Steel Powders to High Density: Part B -The Effect on Microstructural Evolution
This paper describes recent progress on the Direct Selective Laser Sintering of M2 [Fe6W-5Mo-4Cr-2V-0.8C] high speed steel (HSS) and H13 [Fe-5Cr-1V-1Si-1.5Mo-0.4C] tool steel
powders. Part B will focus on the microstructural evolution of laser scanned powder beds. It has
been found that H13 powders are more amenable to Direct Selective Laser Sintering than M2
powders. Densities up to 90% are possible with H13 powder compared with 70% for M2. The
relationship between alloy composition, microstructure, post-scanned density and scan
conditions will be discussed for single track, single layer and multi-layer constructions.The research reported in this paper is a joint project between the Universities of Bradford, Leeds
and Liverpool, funded by the UK Engineering and Physical Sciences Research Council under
Grant Number GR/R32222.Mechanical Engineerin
- …