15 research outputs found

    Minimal Residual Disease in Multiple Myeloma—Current Approaches and Future Clinical Implications

    No full text
    The prognosis and clinical outcomes for patients with multiple myeloma have improved significantly over the past two decades. A substantial number of patients now achieve complete remission after induction therapy, and more sensitive methods are needed to assess response. Minimal or measurable residual disease (MRD) has been incorporated in many clinical trials as well as in clinical practice. The importance of MRD assessment and correlation between MRD negativity and prolonged progression-free and overall survival has been confirmed in numerous clinical trials and several meta-analyses. Recent studies have even suggested that MRD negativity can partly overcome the impact of the negative prognostic factors such as high-risk cytogenetics or adverse revised international scoring system (R-ISS) stage. MRD can be measured in the bone marrow via imaging and via emerging blood-based techniques. The most common methods are multicolor flow cytometry and next-generation sequencing of bone marrow samples. Using these methods in optimal settings, MRD negativity with a sensitivity level of 10−6 can be detected. In this review, we discuss the benefits and limitations of these techniques as well as the clinical implications

    Molecular underpinnings of clinical disparity patterns in African American vs. Caucasian American multiple myeloma patients

    No full text
    Abstract Caucasian Americans (CA) compared with African Americans (AA) have a twofold increased incidence of multiple myeloma (MM) and have an earlier age of diagnosis. However, there is sparse information regarding underlying biological differences across racial/ethnic groups. We characterized genetic alterations using a targeted next-generation sequencing assay called myTYPE, developed at MSKCC, allowing capture of somatic mutations, IgH translocations, gains/losses, and hyperdiploidy. Samples were obtained from the NIH Plasma Cell Dyscrasia Racial Disparity Cohort. In total, 68 patient samples were successfully sequenced and manually curated based on well-established databases. Of the 68 patient samples (47 CA, 21 AA), 84% had at least one type of genomic alteration. Importantly, the IgH translocation, t(11;14), was observed more frequently in the AA group (0 vs. 29%, p = 0.001). Known oncogenic somatic non-synonymous mutations were found in 18 genes and indels in 2 genes. KRAS mutations were the most common mutation found in 16% of patients followed by NRAS and BRAF mutations. TP53 somatic mutations appeared to be more common in CA but lacked significance. This proof-of-principle study indicates the presence of varying underlying tumor biology between racial groups and supports the need of future prospective trials to capture these molecular characteristics

    Mytype: A Capture Based Sequencing Approach to Detect Somatic Mutations, Copy Number Changes and IGH Translocations in Multiple Myeloma

    No full text
    At diagnosis, Multiple Myeloma (MM) is traditionally classified into two clinical and prognostic subgroups groups on the basis of initiating cytogenetic abnormalities: IGH translocations and hyperdiploidy. Currently, these events are clinically ascertained by Fluorescent In-Situ Hybridization (FISH). In recent years, comprehensive genome profiling studies have shown that MM pathogenesis is defined by a spectrum of acquired somatic lesions, many of which are biologically and clinically relevant. To this effect, targeted gene sequencing approaches are becoming routine in the upfront diagnostic settings. Here we present myTYPE, a MM-specific targeted next generation sequencing panel to identify germline and somatic substitutions, indels, Copy Number Aberrations (CNA) and IGH translocations. Methods A multiplex bait panel was designed to capture the exons of 120 genes implicated in MM pathogenesis, entire IGH locus as well as genome wide representation of single nucleotide polymorphisms (SNPs) (1 in 3Mb) to enable detection of arm level copy number events and recurrent focal events. These 120 genes were selected on the basis of 1) frequently mutated and driver genes in MM 2) genes in important signaling pathways, e.g the NFKB pathway 3) treatment targets and candidate genes for drug resistance, e.g. cereblon.To validate the efficacy of the assay, 16 constitutional bone marrow samples and 18 tumor samples were sequenced using myTYPE. For validation, 6/18 tumor/normal pairs sequenced using myTYPE were subject to WGS and remaining 12/18 tumor samples were subject to FISH. After sequencing, we obtained an overall median target coverage of 815x. Results After alignment, substitutions and indels were called using Caveman, Pindel and Strelka. CNAs were identified using Facets and IGH translocations were identified using Delly along with a modified version of BRASS. Below is a description of the genomic abnormalities captured by the myTYPE assay. SNVs and Indels For the 6 tumor/normal pairs sequenced using myTYPE and WGS, we obtained a total of 21 (median = 3) non-synonymous mutations using myTYPE. When limiting the WGS calls to myTYPE targets, we recovered 20/21 non-synonymous mutations identified by myTYPE. These involved SNVs and indels in key MM related drivers including NRAS, KRAS, FAM46C and TP53 among others. For the mutations identified by both myTYPE and WGS, there was a high correlation between the variant VAFs, R2 = 0.99 and as expected is better in capturing subclonal mutations. IGH rearrangements and Copy Number Aberrations (CNA) Next we compared myTYPE and WGS results for recurrent CNAs in MM. We specifically looked at deletions of 1p, 13p, 16q, 17p and gains of 1q, 11q and found a 100% concordance of these aberrations identified by both assays. The remaining 12 samples sequenced using myTYPE also had orthogonal FISH. myTYPE identified a total of 7 IGH rearrangements, 4 of which are also reported by FISH. Three additional t(11;14) translocations were uniquely identified by myTYPE in cases that remained clinically uncharacterized. FISH was also used to probe deletions in 17q, 13q, 1p and 1q gain. All aberrations identified by FISH were also identified in myType. Additionally, 13q- in four samples and 1p- in one sample were uniquely identified by myTYPE. Conclusion In summary, we present a targeted assay capable of identifying somatic mutations, CNAs and IGH translocations of prognostic and diagnostic relevance in MM. When compared to conventional assays currently used in clinical practice, myTYPE identified at least one disease defining alterations in all samples screened. Evaluation of sensitivity and specificity will require larger clinical cohorts. Importantly, myTYPE enables comprehensive profiling, large sample multiplexing and short turn around times which renders it as an optimal assay for utilisation in the upfront clinical setting

    Baseline identification of clonal V(D)J sequences for DNA-based minimal residual disease detection in multiple myeloma.

    No full text
    Tracking of clonal immunoglobulin V(D)J rearrangement sequences by next generation sequencing is highly sensitive for minimal residual disease in multiple myeloma. However, previous studies have found variable rates of V(D)J sequence identification at baseline, which could limit tracking. Here, we aimed to define the factors influencing the identification of clonal V(D)J sequences. Bone marrow mononuclear cells from 177 myeloma patients underwent V(D)J sequencing by the LymphoTrack assays (Invivoscribe). As a molecular control for tumor cell content, we sequenced the samples using our in-house myeloma panel myTYPE. V(D)J sequence clonality was identified in 81% of samples overall, as compared with 95% in samples where tumor-derived DNA was detectable by myTYPE. Clonality was detected more frequently in patients with lambda-restricted disease, mainly because of increased detection of kappa gene rearrangements. Finally, we describe how the tumor cell content of bone marrow aspirates decrease gradually in sequential pulls because of hemodilution: From the initial pull used for aspirate smear, to the final pull that is commonly used for research. In conclusion, baseline clonality detection rates of 95% or higher are feasible in multiple myeloma. Optimal performance depends on the use of good quality aspirates and/or subsequent tumor cell enrichment

    Capture Rate of V(D)J Sequencing for Minimal Residual Disease Detection in Multiple Myeloma

    No full text
    Abstract Purpose: Minimal residual disease (MRD) negativity is a strong predictor for outcome in multiple myeloma. To assess V(D)J clonotype capture using the updated Adaptive next-generation sequencing (NGS) MRD assay in a clinical setting, we analyzed baseline and follow-up samples from patients with multiple myeloma who achieved deep clinical responses. Experimental Design: A total of 159 baseline and 31 follow-up samples from patients with multiple myeloma were sequenced using the NGS MRD assay. Baseline samples were also sequenced using a targeted multiple myeloma panel (myTYPE). We estimated ORs with 95% confidence intervals (CI) for clonotypes detection using logistic regression. Results: The V(D)J clonotype capture rate was 93% in baseline samples with detectable genomic aberrations, indicating presence of tumor DNA, assessed through myTYPE. myTYPE-positive samples had significantly higher V(D)J clonotype detection rates in univariate (OR, 7.3; 95% CI, 2.8–22.6) and multivariate analysis (OR, 4.4; 95% CI, 1.4–16.9; P = 0.016). Higher disease burden was associated with higher probability of V(D)J clonotype capture, meanwhile no such association was found for age, gender, or type of heavy or light immunoglobulin chain. All V(D)J clonotypes detected at baseline were detected in MRD-positive samples indicating that the V(D)J clonotypes remained stable and did not undergo further rearrangements during follow-up. Of the 31 posttreatment samples, 12 were MRD-negative using the NGS MRD assay. Conclusions: NGS for V(D)J rearrangements in multiple myeloma offers a reliable and sensitive method for MRD tracking with high detection rates in the clinical setting
    corecore