50 research outputs found

    Application of Molecular Beacon Technology for the Identification of Bacteria

    Get PDF
    Veterinary Biomedical Science

    The influence of opponent level on professional soccer players’ training and match performance assessed by using wearable sensor technology

    Get PDF
    Purpose. The study aim was 2-fold: to quantify and compare the weekly external training load that preceded matches; to compare in-match activities depending on the opponent level (top, middle, bottom) in a top-level team from the first profes sional Asian national league. Methods. The load for 6 matches played against top-, 11 against middle-, and 11 against bottom-level teams was monitored. With a 15-Hz Global Positioning System, total duration, total distance, high-speed (18–23 km ∙ h–1) running distance, sprint (> 23 km ∙ h–1) distance, maximal speed, acceleration zone 1 (AccZ1) ( 4 m ∙ s–2), deceleration zone 1 (DecZ1) (> –2 m ∙ s–2), DecZ2 (–2 to –4 m ∙ s–2), DecZ3 (< –4 m ∙ s–2), player load, and metabolic power were collected in 12 players. Results. DecZ3 showed higher values against top-level compared with middle- (effect size [ES] = 0.91) and bottom-level opponents (ES = 1.50). The training was significantly longer against middle-level compared with top- and bottom-level opponents (all, p 0.001). Total distance was bigger against middle-level compared with top- (p = 0.011, ES = –0.92) and bottom-level opponents (p = 0.027, ES = 1.50). AccZ2 presented higher values when middle-level came close compared with bottom-level opponents (p = 0.05, ES = 0.79). Conclusions. Opponent’s level influences the load experienced by soccer players during matches. Total distance, high speed running distance, AccZ1, and AccZ2 exhibited higher training values when a win or a draw approached. Decelerations in all zones were highest in matches against top-level teams.info:eu-repo/semantics/publishedVersio

    The Paradoxical Effect of Creatine Monohydrate on Muscle Damage Markers: A Systematic Review and Meta-Analysis

    Get PDF
    Background: Several studies have examined the effect of creatine monohydrate (CrM) on indirect muscle damage markers and muscle performance, although pooled data from several studies indicate that the benefits of CrM on recovery dynamics are limited. Objective: This systematic review and meta-analysis determined whether the ergogenic effects of CrM ameliorated markers of muscle damage and performance following muscle-damaging exercises. Methods: In total, 23 studies were included, consisting of 240 participants in the CrM group (age 23.9 ± 10.4 years, height 178 ± 5 cm, body mass 76.9 ± 7.6 kg, females 10.4%) and 229 participants in the placebo group (age 23.7 ± 8.5 years, height 177 ± 5 cm, body mass 77.0 ± 6.6 kg, females 10.0%). These studies were rated as fair to excellent following the PEDro scale. The outcome measures were compared between the CrM and placebo groups at 24–36 h and 48–90 h following muscle-damaging exercises, using standardised mean differences (SMDs) and associated p-values via forest plots. Furthermore, sub-group analyses were conducted by separating studies into those that examined the effects of CrM as an acute training response (i.e., after one muscle-damaging exercise bout) and those that examined the chronic training response (i.e., examining the acute response after the last training session following several weeks of training). Results: According to the meta-analysis, the CrM group exhibited significantly lower indirect muscle damage markers (i.e., creatine kinase, lactate dehydrogenase, and/or myoglobin) at 48–90 h post-exercise for the acute training response (SMD − 1.09; p = 0.03). However, indirect muscle damage markers were significantly greater in the CrM group at 24 h post-exercise (SMD 0.95; p = 0.04) for the chronic training response. Although not significant, a large difference in indirect muscle damage markers was also found at 48 h post-exercise (SMD 1.24) for the chronic training response. The CrM group also showed lower inflammation for the acute training response at 24–36 h post-exercise and 48–90 h post-exercise with a large effect size (SMD − 1.38 ≤ d ≤  − 1.79). Similarly, the oxidative stress markers were lower for the acute training response in the CrM group at 24–36 h post-exercise and 90 h post-exercise, with a large effect size (SMD − 1.37 and − 1.36, respectively). For delayed-onset muscle soreness (DOMS), the measures were lower for the CrM group at 24 h post-exercise with a moderate effect size (SMD − 0.66) as an acute training response. However, the inter-group differences for inflammation, oxidative stress, and DOMS were not statistically significant (p > 0.05). Conclusion: Overall, our meta-analysis demonstrated a paradoxical effect of CrM supplementation post-exercise, where CrM appears to minimise exercise-induced muscle damage as an acute training response, although this trend is reversed as a chronic training response. Thus, CrM may be effective in reducing the level of exercise-induced muscle damage following a single bout of strenuous exercises, although training-induced stress could be exacerbated following long-term supplementation of CrM. Although long-term usage of CrM is known to enhance training adaptations, whether the increased level of exercise-induced muscle damage as a chronic training response may provide potential mechanisms to enhance chronic training adaptations with CrM supplementation remains to be confirmed

    Quantification of Pre-Season and In-Season Training Intensity across an Entire Competitive Season of Asian Professional Soccer Players

    Get PDF
    The aim of this study was to quantify the training load in two microcycles (Ms) from pre- and another two from in-season and to analyze playing position influences on the load experienced by professional soccer players. Nineteen Asian athletes, including four central defenders, four wide defenders, six central midfielders, three wide midfielders, and two strikers participated in this study. The micro-electromechanical system was used to collect training duration, total distance, and data from Zone 1 (0–3.9 km·h−1), Zone 2 (4–7.1 km·h−1), Zone 3 (7.2–14.3 km·h−1), Zone 4 (14.4–19.7 km·h−1), and Zone 5 (>19.8 km·h−1), heart rate maximum (HRmax), and average (HRavg). The load was reduced on the last day of the Ms, with the exception of Zone 5, in M1, where higher values were found on the last day. Significant differences were observed between central and wide defenders for distance covered in Zone 4 (effect-size: ES = −4.83) in M2 and M4 (ES = 4.96). Throughout all the Ms, a constant HRmax (165–188 bpm) and HRavg (119–145 bpm) were observed. There was a tendency to decrease the load on the last day of the Ms. In general, there were higher external training loads in Ms from the pre-season than in-season. Wide defenders and wide midfielders showed higher distances covered with high-intensity running.info:eu-repo/semantics/publishedVersio

    Exploring the influence of task and environmental constraints on batting and bowling performance in cricket: A systematic review

    Get PDF
    Cricket is an unique international sport where environmental and task constraints have shown to have a significant impact on batting and bowling performance. The aim of this systematic review was to determine the effect of task and environmental constraints on cricket performance. A systematic literature search was conducted across Scopus, PubMed, Web of Science, CINAHL, and SportDiscus. Studies were deemed eligible if they reported the effects of pitch type, pitch length, equipment (e.g. cricket bat, batting pads, ball type, etc.) on cricket performance. A total of 20 studies met the inclusion criteria with Kmet score ranging between 75% and 92%. The results from this study demonstrate that environmental constraints such as pitch-type and task constraints such as equipment modification (e.g. type of cricket bat, batting pads, ball) and pitch length can influence cricketer's batting and bowling performance. Scaling cricket bats and reducing pitch length were acutely beneficial to cricket batting, while ball type, pitch length and soil properties were impactful on bowling performance. Importantly though, the impact of constraint manipulation seemed to be influenced by the skill level of the performer. The findings from this study may help to inform coaches and practitioners improve skill acquisition, through constraint manipulation, to develop highly adaptive cricket batting and bowling skill

    The correlation of force-velocity-power relationship of a whole-body movement with 20 m and 60 m sprint performance

    Get PDF
    Sprinting ability is important for successful performance in sports. The aim of this study was to examine the correlation between force-velocity-power relationship of a whole-body movement and sprint performance. Twelve male participants performed maximal squat jumps with additional loads ranging from 0% to 100% body weight to obtain force-velocity profiles. The mean force and velocity were calculated during the push-off phase for each jump, which resulted in a force-velocity curve. The theoretical maximal force (F0), theoretical maximal velocity (V0) and theoretical maximum power (P0) were computed via extrapolation of the force and velocity data. In the second session, participants performed two 60 m sprints and the time to cover 20 m (t20), time to cover 60 m (t60), and maximum sprint velocity (Vmax) were calculated from the best 60 m trial. Correlation analyses revealed strong and significant correlations between V0 and t20 (r = −0.60), V0 and t60 (r = −0.60), P0 and t20 (r = −0.75) and P0 and t60 (r = −0.78). Multiple linear regression indicated that P0 explained 56%, 61% and 60% of the variability in t20, t60 and Vmax, respectively. Our results emphasise the importance of developing power production capabilities to improve sprint performance

    Chikungunya Outbreak, South India, 2006

    Get PDF
    We investigated chikungunya outbreaks in South India and observed a high attack rate, particularly among adults and women. Transmission was facilitated by Aedes aegypti mosquitoes in peridomestic water containers, as indicated by a high Breteau index. We recommended vector control measures and health education to promote safe water storage practices

    Virome characterization in commercial bovine serum batches : a potentially needed testing strategy for biological products

    Get PDF
    Bovine serum has been widely used as a universal supplement in culture media and other applications, including the manufacture of biological products and the production of synthetic meat. Currently, commercial bovine serum is tested for possible viral contaminants following regional guidelines. Regulatory agencies’ established tests focused on detecting selected animal origin viruses and are based on virus isolation, immunofluorescence, and hemadsorption assays. However, these tests may fail to detect new or emerging viruses in biological products. High-throughput sequencing is a powerful option since no prior knowledge of the viral targets is required. In the present study, we evaluate the virome of seven commercial batches of bovine serum from Mexico (one batch), New Zealand (two batches), and the United States (four batches) using a specific preparation and enrichment method for pooled samples and sequencing using an Illumina platform. A variety of circular replicase-encoding single-stranded (CRESS) DNA families (Genomoviridae, Circoviridae, and Smacoviridae) was identified. Additionally, CrAssphage, a recently discovered group of bacteriophage correlated with fecal contamination, was identified in 85% of the tested batches. Furthermore, sequences representing viral families with single-stranded DNA (Parvoviridae), double-stranded DNA (Polyomaviridae and Adenoviridae), single-stranded RNA (Flaviviridae, Picornaviridae, and Retroviridae), and double-stranded RNA (Reoviridae) were identified. These results support that high-throughput sequencing associated with viral enrichment is a robust tool and should be considered an additional layer of safety when testing pooled biologicals to detect viral contaminants overlooked by the current testing protocols

    Whole genome sequencing-based detection of antimicrobial resistance and virulence in non-typhoidal Salmonella enterica isolated from wildlife

    Get PDF
    The aim of this study was to generate a reference set of Salmonella enterica genomes isolated from wildlife from the United States and to determine the antimicrobial resistance and virulence gene profile of the isolates from the genome sequence data. We sequenced the whole genomes of 103 Salmonella isolates sampled between 1988 and 2003 from wildlife and exotic pet cases that were submitted to the Oklahoma Animal Disease Diagnostic Laboratory, Stillwater, Oklahoma. Among 103 isolates, 50.48% were from wild birds, 0.9% was from fish, 24.27% each were from reptiles and mammals. 50.48% isolates showed resistance to at least one antibiotic. Resistance against the aminoglycoside streptomycin was most common while 9 isolates were found to be multi-drug resistant having resistance against more than three antibiotics. Determination of virulence gene profile revealed that the genes belonging to csg operons, the fim genes that encode for type 1 fimbriae and the genes belonging to type III secretion system were predominant among the isolates. The universal presence of fimbrial genes and the genes encoded by pathogenicity islands 1-2 among the isolates we report here indicates that these isolates could potentially cause disease in humans. Therefore, the genomes we report here could be a valuable reference point for future traceback investigations when wildlife is considered to be the potential source of human Salmonellosis.Peer reviewedOklahoma Animal Disease Diagnostic Laborator
    corecore