2,455 research outputs found
Jet shapes in ep collisions at HERA
New measurements of the jet shape in ep collisions at HERA using the
k_T-cluster jet algorithm are presented.Comment: 7 pages, 3 figures; plenary talk given at the 3rd UK Phenomenology
Workshop on HERA Physics, Durham, UK, September 199
Growing cotton : a 4-H club project
At head of title: University of Missouri College of Agriculture, Agricultural Extension Service."October, 1948.""University of Missouri College of Agriculture and the United States Department of Agriculture Cooperating"--Page 19.Title from cover
Overview of physics results from MAST towards ITER/DEMO and the MAST Upgrade
New diagnostic, modelling and plant capability on the Mega Ampere Spherical Tokamak (MAST) have delivered important results in key areas for ITER/DEMO and the upcoming MAST Upgrade, a step towards future ST devices on the path to fusion currently under procurement. Micro-stability analysis of the pedestal highlights the potential roles of micro-tearing modes and kinetic ballooning modes for the pedestal formation. Mitigation of edge localized modes (ELM) using resonant magnetic perturbation has been demonstrated for toroidal mode numbers n = 3, 4, 6 with an ELM frequency increase by up to a factor of 9, compatible with pellet fuelling. The peak heat flux of mitigated and natural ELMs follows the same linear trend with ELM energy loss and the first ELM-resolved T-i measurements in the divertor region are shown. Measurements of flow shear and turbulence dynamics during L-H transitions show filaments erupting from the plasma edge whilst the full flow shear is still present. Off-axis neutral beam injection helps to strongly reduce the redistribution of fast-ions due to fishbone modes when compared to on-axis injection. Low-k ion-scale turbulence has been measured in L-mode and compared to global gyro-kinetic simulations. A statistical analysis of principal turbulence time scales shows them to be of comparable magnitude and reasonably correlated with turbulence decorrelation time. T-e inside the island of a neoclassical tearing mode allow the analysis of the island evolution without assuming specific models for the heat flux. Other results include the discrepancy of the current profile evolution during the current ramp-up with solutions of the poloidal field diffusion equation, studies of the anomalous Doppler resonance compressional Alfven eigenmodes, disruption mitigation studies and modelling of the new divertor design for MAST Upgrade. The novel 3D electron Bernstein synthetic imaging shows promising first data sensitive to the edge current profile and flows
Determination of the QCD color factor ratio CA/CF from the scale dependence of multiplicity in three jet events
I examine the determination of the QCD color factor ratio CA/CF from the
scale evolution of particle multiplicity in e+e- three jet events. I fit an
analytic expression for the multiplicity in three jet events to event samples
generated with QCD multihadronic event generators. I demonstrate that a one
parameter fit of CA/CF yields the expected result CA/CF=2.25 in the limit of
asymptotically large energies if energy conservation is included in the
calculation. In contrast, a two parameter fit of CA/CF and a constant offset to
the gluon jet multiplicity, proposed in a recent study, does not yield
CA/CF=2.25 in this limit. I apply the one parameter fit method to recently
published data of the DELPHI experiment at LEP and determine the effective
value of CA/CF from this technique, at the finite energy of the Z0 boson, to be
1.74+-0.03+-0.10, where the first uncertainty is statistical and the second is
systematic.Comment: 20 pages including 6 figures Version 2 corrects typographical error
in equation (2
Precedence-constrained scheduling problems parameterized by partial order width
Negatively answering a question posed by Mnich and Wiese (Math. Program.
154(1-2):533-562), we show that P2|prec,|, the
problem of finding a non-preemptive minimum-makespan schedule for
precedence-constrained jobs of lengths 1 and 2 on two parallel identical
machines, is W[2]-hard parameterized by the width of the partial order giving
the precedence constraints. To this end, we show that Shuffle Product, the
problem of deciding whether a given word can be obtained by interleaving the
letters of other given words, is W[2]-hard parameterized by , thus
additionally answering a question posed by Rizzi and Vialette (CSR 2013).
Finally, refining a geometric algorithm due to Servakh (Diskretn. Anal. Issled.
Oper. 7(1):75-82), we show that the more general Resource-Constrained Project
Scheduling problem is fixed-parameter tractable parameterized by the partial
order width combined with the maximum allowed difference between the earliest
possible and factual starting time of a job.Comment: 14 pages plus appendi
Noninvasive imaging of focal atherosclerotic lesions using fluorescence molecular tomography
Insights into the etiology of stroke and myocardial infarction suggest that rupture of unstable atherosclerotic plaque is the precipitating event. Clinicians lack tools to detect lesion instability early enough to intervene, and are often left to manage patients empirically, or worse, after plaque rupture. Noninvasive imaging of the molecular events signaling prerupture plaque progression has the potential to reduce the morbidity and mortality associated with myocardial infarction and stroke by allowing early intervention. Here, we demonstrate proof-of-principle in vivo molecular imaging of C-type natriuretic peptide receptor in focal atherosclerotic lesions in the femoral arteries of New Zealand white rabbits using a custom built fiber-based, fluorescence molecular tomography (FMT) system. Longitudinal imaging showed changes in the fluorescence signal intensity as the plaque progressed in the air-desiccated vessel compared to the uninjured vessel, which was validated by ex vivo tissue studies. In summary, we demonstrate the potential of FMT for noninvasive detection of molecular events leading to unstable lesions heralding plaque rupture
Aging is associated with an earlier arrival of reflected waves without a distal shift in reflection sites
Background-Despite pronounced increases in central pulse wave velocity (PWV) with aging, reflected wave transit time (RWTT), traditionally defined as the timing of the inflection point (T-INF) in the central pressure waveform, does not appreciably decrease, leading to the controversial proposition of a "distal-shift" of reflection sites. T-INF, however, is exceptionally prone to measurement error and is also affected by ejection pattern and not only by wave reflection. We assessed whether RWTT, assessed by advanced pressure-flow analysis, demonstrates the expected decline with aging. Methods and Results-We studied a sample of unselected adults without cardiovascular disease (n=48; median age 48 years) and a clinical population of older adults with suspected/established cardiovascular disease (n=164; 61 years). We measured central pressure and flow with carotid tonometry and phase-contrast MRI, respectively. We assessed RWTT using wave-separation analysis (RWTTWSA) and partially distributed tube-load (TL) modeling (RWTTTL). Consistent with previous reports, T-INF did not appreciably decrease with age despite pronounced increases in PWV in both populations. However, aging was associated with pronounced decreases in RWTTWSA (general population -15.0 ms/decade, P<0.001; clinical population -9.07 ms/decade, P=0.003) and RWTTTL (general -15.8 ms/decade, P<0.001; clinical -11.8 ms/decade, P<0.001). There was no evidence of an increased effective reflecting distance by either method. TINF was shown to reliably represent RWTT only under highly unrealistic assumptions about input impedance. Conclusions-RWTT declines with age in parallel with increased PWV, with earlier effects of wave reflections and without a distal shift in reflecting sites. These findings have important implications for our understanding of the role of wave reflections with aging
- …