1,109 research outputs found

    The left sternalis muscle variation detected during mastectomy

    Get PDF
    The sternalis muscle variation is a well-known anatomical situation. It is present in 8.7% of women and 6.4% of men, although the incidence varies according to sex, race and ethnicity. During a left modified radical mastectomy operation on a 46-year-old female patient a sternalis muscle was detected on the pectoralis major muscle in the superficial fascia. It was in craniocaudal position and was parallel to the body of the sternum. The cylindrical muscle was approximately 8 cm in length and 2 cm in diameter. Such variations are considered to have their origin in embryological development. Awareness of muscular variations and their identification is important both for procedure through the proper dissection planes during breast surgery and in radiological examination and follow-up

    The Charge Form Factor of the Neutron at Low Momentum Transfer from the 2H⃗(e⃗,eâ€Čn)p^{2}\vec{\rm H}(\vec{\rm e},{\rm e}'{\rm n}){\rm p} Reaction

    Full text link
    We report new measurements of the neutron charge form factor at low momentum transfer using quasielastic electrodisintegration of the deuteron. Longitudinally polarized electrons at an energy of 850 MeV were scattered from an isotopically pure, highly polarized deuterium gas target. The scattered electrons and coincident neutrons were measured by the Bates Large Acceptance Spectrometer Toroid (BLAST) detector. The neutron form factor ratio GEn/GMnG^{n}_{E}/G^{n}_{M} was extracted from the beam-target vector asymmetry AedVA_{ed}^{V} at four-momentum transfers Q2=0.14Q^{2}=0.14, 0.20, 0.29 and 0.42 (GeV/c)2^{2}.Comment: 5 pages, 3 figures, submitted to Phys. Rev. Let

    Measurement of the proton electric to magnetic form factor ratio from \vec ^1H(\vec e, e'p)

    Full text link
    We report the first precision measurement of the proton electric to magnetic form factor ratio from spin-dependent elastic scattering of longitudinally polarized electrons from a polarized hydrogen internal gas target. The measurement was performed at the MIT-Bates South Hall Ring over a range of four-momentum transfer squared Q2Q^2 from 0.15 to 0.65 (GeV/c)2^2. Significantly improved results on the proton electric and magnetic form factors are obtained in combination with previous cross-section data on elastic electron-proton scattering in the same Q2Q^2 region.Comment: 4 pages, 2 figures, submitted to PR

    Anisotropy of ferromagnetism in Co-implanted rutile

    Get PDF
    Magnetic anisotropy of cobalt implanted single-crystalline rutile has been studied by means of magneto-optical Kerr effect (MOKE) and superconducting quantum interference device (SQUID) techniques. We observed for the first time strong angular dependence of the remanent magnetization and coercive field in the plane of the implanted surface: twofold anisotropy for the (100)-substrate and fourfold anisotropy for the (001)-substrate samples. The observation opens up new possibilities to tailor magnetic anisotropies of the material. Possible origins of ferromagnetism and anisotropies in dielectric and diamagnetic single-crystalline TiO2 samples after Co-ion implantation are discussed. © 2005 IOP Publishing Ltd
    • 

    corecore