764 research outputs found

    Strong-Coupling Superconductivity of CeIrSi3_3 with the Non-centrosymmetric Crystal Structure

    Full text link
    We studied the pressure-induced superconductor CeIrSi3_3 with the non-centrosymmetric tetragonal structure under high pressure. The electrical resistivity and ac heat capacity were measured in the same run for the same sample. The critical pressure was determined to be PcP_{\rm c} = 2.25 GPa, where the antiferromagnetic state disappears. The heat capacity CacC_{\rm ac} shows both antiferromagnetic and superconducting transitions at pressures close to PcP_{\rm c}. On the other hand, the superconducting region is extended to high pressures of up to about 3.5 GPa, with the maximum transition temperature TscT_{\rm sc} = 1.6 K around 2.52.72.5-2.7 GPa. At 2.58 GPa, a large heat capacity anomaly was observed at TscT_{\rm sc} = 1.59 K. The jump of the heat capacity in the form of ΔCac/Cac(Tsc){\Delta}{C_{\rm ac}}/C_{\rm ac}(T_{\rm sc}) is 5.7 ±\pm 0.1. This is the largest observed value among previously reported superconductors, indicating the strong-coupling superconductivity. The electronic specific heat coefficient at TscT_{\rm sc} is, however, approximately unchanged as a function of pressure, even at PcP_{\rm c}.Comment: This paper will be published in J. Phys. Soc. Jpn. on the August issue of 200

    Microscopic Mechanism and Pairing Symmetry of Superconductivity in the Noncentrosymmetric Heavy Fermion Systems CeRhSI3_3 and CeIrSi3_3

    Full text link
    We study the pairing symmetry of the noncentrosymmetric heavy fermion superconductors CeRhSi3_3 and CeIrSi3_3 under pressures, which are both antiferromagnets at ambient pressure. We solve the Eliashberg equation by means of the random phase approximation and find that the mixed state of extended s-wave and p-wave rather than the d+fd+f wave state could be realized by enhanced antiferromagnetic spin fluctuations. It is elucidated that the gap function has line nodes on the Fermi surface and the resulting density of state in the superconducting state shows a similar character to that of usual d-wave superconductors, resulting in the NMR relaxation rate 1/(T1T)1/(T_1T) that exhibits no coherence peak and behaves like 1/(T1T)T21/(T_1T)\propto T^2 at low temperatures

    Breakdown of supersaturation barrier links protein folding to amyloid formation

    Get PDF
    The thermodynamic hypothesis of protein folding, known as the “Anfinsen’s dogma” states that the native structure of a protein represents a free energy minimum determined by the amino acid sequence. However, inconsistent with the Anfinsen’s dogma, globular proteins can misfold to form amyloid fibrils, which are ordered aggregates associated with diseases such as Alzheimer’s and Parkinson’s diseases. Here, we present a general concept for the link between folding and misfolding. We tested the accessibility of the amyloid state for various proteins upon heating and agitation. Many of them showed Anfinsen-like reversible unfolding upon heating, but formed amyloid fibrils upon agitation at high temperatures. We show that folding and amyloid formation are separated by the supersaturation barrier of a protein. Its breakdown is required to shift the protein to the amyloid pathway. Thus, the breakdown of supersaturation links the Anfinsen’s intramolecular folding universe and the intermolecular misfolding universe

    Observation of Spin-Dependent Charge Symmetry Breaking in ΛN\Lambda N Interaction: Gamma-Ray Spectroscopy of Λ4^4_{\Lambda }He

    Get PDF
    The energy spacing between the ground-state spin doublet of Λ4^4_\Lambda He(1+^+,0+^+) was determined to be 1406±2±21406 \pm 2 \pm 2 keV, by measuring γ\gamma rays for the 1+0+1^+ \to 0^+ transition with a high efficiency germanium detector array in coincidence with the 4^4He(K,π)(K^-,\pi^-) Λ4^4_\Lambda He reaction at J-PARC. In comparison to the corresponding energy spacing in the mirror hypernucleus Λ4^4_\Lambda H, the present result clearly indicates the existence of charge symmetry breaking (CSB) in ΛN\Lambda N interaction. It is also found that the CSB effect is large in the 0+0^+ ground state but is by one order of magnitude smaller in the 1+1^+ excited state, demonstrating that the ΛN\Lambda N CSB interaction has spin dependence
    corecore