23 research outputs found

    Ice Cliff Dynamics of Debris-Covered Trakarding Glacier in the Rolwaling Region, Nepal Himalaya

    Get PDF
    Ice cliffs can act as “hot spots” for melt on debris-covered glaciers and promote local glacier mass loss. Repeat high-resolution remote-sensing data are therefore required to monitor the role of ice cliff dynamics in glacier mass loss. Here we analyze high-resolution aerial photogrammetry data acquired during the 2007, 2018, and 2019 post-monsoon seasons to delineate and monitor the morphology, distribution, and temporal changes of the ice cliffs across the debris-covered Trakarding Glacier in the eastern Nepal Himalaya. We generate an ice cliff inventory from the 2018 and 2019 precise terrain data, with ice cliffs accounting for 4.7 and 6.1% of the debris-covered area, respectively. We observe large surface lowering (>2.0 m a−1) where there is a denser distribution of ice cliffs. We also track the survival, formation, and disappearance of ice cliffs from 2018 to 2019, and find that ∼15% of the total ice cliff area is replaced by new ice cliffs. Furthermore, we observe the overall predominance of northwest-facing ice cliffs, although we do observe spatial heterogeneities in the aspect variance of the ice cliffs (ice cliffs face in similar/various directions). Many new ice cliffs formed across the stagnant middle sections of the glacier, coincident with surface water drainage and englacial conduit intake observations. This spatial relationship between ice cliffs and the glacier hydrological system suggests that these englacial and supraglacial hydrological systems play a significant role in ice cliff formation

    Recent climatic change of Alaska (1724-2008) record from Aurora Peak ice core, central Alaska

    Get PDF
    第3回極域科学シンポジウム/第35回極域気水圏シンポジウム 11月29日(木) 国立国語研究所 2階多目的

    Relation between annual accumulation reconstructed from ice cores at Alaskan alpine glaciers and Pacific Climate Shift

    Get PDF
    第3回極域科学シンポジウム/第35回極域気水圏シンポジウム 11月29日(木) 国立国語研究所 2階多目的

    Black carbon and inorganic aerosols in Arctic snowpack

    Get PDF
    Key Points: • First ever measurements with a high‐accuracy single‐particle soot photometer of black carbon (BC) concentrations in Arctic snowpack • Topography and BC emission flux strongly influenced latitudinal variations of mass concentrations and size distributions of BC • Measured BC mass concentrations 2–25 times lower than previously reported show the importance of revalidating climate modelsBlack carbon (BC) deposited on snow lowers its albedo, potentially contributing to warming in the Arctic. Atmospheric distributions of BC and inorganic aerosols, which contribute directly and indirectly to radiative forcing, are also greatly influenced by depositions. To quantify these effects, accurate measurement of the spatial distributions of BC and ionic species representative of inorganic aerosols (ionic species hereafter) in snowpack in various regions of the Arctic is needed, but few such measurements are available. We measured mass concentrations of size-resolved BC (CMBC) and ionic species in snowpack by using a single-particle soot photometer and ion chromatography, respectively, over Finland, Alaska, Siberia, Greenland, and Spitsbergen during early spring in 2012–2016. Total BC mass deposited per unit area (DEPMBC) during snow accumulation periods was derived from CMBC and snow water equivalent (SWE). Our analyses showed that the spatial distributions of anthropogenic BC emission flux, total precipitable water, and topography strongly influenced latitudinal variations of CMBC, BC size distributions, SWE, and DEPMBC. The average size distributions of BC in Arctic snowpack shifted to smaller sizes with decreasing CMBC due to an increase in the removal efficiency of larger BC particles during transport from major sources. Our measurements of CMBC were lower by a factor of ~13 than previous measurements made with an Integrating Sphere/Integrating Sandwich spectrophotometer due mainly to interference from coexisting non-BC particles such as mineral dust. The SP2 data presented here will be useful for constraining climate models that estimate the effects of BC on the Arctic climate.Plain Language Summary Black carbon (BC) particles, commonly known as soot, are emitted from incomplete combustion of fossil fuels and biomass. They efficiently absorb solar radiation and thus heat the atmosphere. BC particles emitted at midlatitudes and in the Arctic are deposited onto snow in the Arctic, accelerating snowmelt in early spring by absorbing solar radiation. These processes contribute to warming in the Arctic. Calculations of this warming effect by using numerical models need to be validated by comparison with observed BC concentrations in snowpack. However, there are very few accurate records of concentrations of BC in snow because of technical difficulties in making these measurements. We developed a new laser-induced incandescence technique to measure BC concentrations in snowpack and applied it for the first time in six Arctic regions (Finland, Alaska, North and South Siberia, Greenland, and Spitsbergen). The BC concentrations we measured were highest in Finland and South Siberia, which are closer to large anthropogenic BC sources than the other regions, where our measured BC concentrations were much lower. On average, our BC concentrations were much lower than those previously measured by different techniques. Therefore, previous comparisons of modeled and observed BC concentrations need to be re-evaluated using the present data

    Records of sea-ice extent and air temperature at the Sea of Okhotsk from an ice core of Mount Ichinsky, Kamchatka

    Get PDF
    The Sea of Okhotsk is the southernmost area in the Northern Hemisphere where seasonal sea ice is produced every year. The formation of sea ice drives thermohaline circulation in the Sea of Okhotsk, and this circulation supports the high productivity in the region. However, recent reports have indicated that sea-ice production in the Sea of Okhotsk is decreasing, raising concern that the decreased sea ice will affect not only circulation but also biological productivity in the sea. To reconstruct climatic changes in the Sea of Okhotsk region, we analyzed an ice core obtained from Ichinskaya Sopka (Mount Ichinsky), Kamchatka. We assumed that the remarkable negative peaks of dD in the ice core were caused by expansion of sea ice in the Sea of Okhotsk. Melt feature percentage (MFP), which indicates summer snowmelt, showed high values in the 1950–60s and the mid-1990s–2000s. The high MFP in the 1950–60s was assumed to be caused by an increase in cyclone activity reaching Kamchatka during a negative period of the Pacific Decadal Oscillation index, and that in the 1990–2000s may reflect the increase in solar irradiation during a positive period of the summer Arctic Oscillation index

    北西グリーンランド, SIGMA-Aサイトにおける 2012年, 2013年の雪氷調査

    No full text
    Glaciological observations were conducted in 2012 and 2013 at the SIGMA-A site on the northwest Greenland ice sheet (78°03’06”N, 67°37’42”W, 1490 m a.s.l.) as part of the Snow Impurity and Glacial Microbe effects on abrupt warming in the Arctic (SIGMA) project. The meteorological conditions during the two observations were quite different. The meteorological condition during the 2012 observation period was warm, and heavy rainfall occurred during the observation period, thus the snow was very wet. In contrast, the meteorological condition during the observation period in 2013 was cold, with a blowing snow event, thus the snow was quite dry. The glaciological observations in 2012 consisted of 1) snow-stake measurements, 2) snow pit observations, 3) grain size observations for validation of satellite-derived snow products, 4) snow specific surface area measurements using a near-infrared camera, 5) snow sampling for chemical analyses, and 6) drilling of firn cores with a hand auger. The glaciological observations in 2013 consisted of 1) snow-stake measurements, 2) snow pit observations, and 3) snow sampling for chemical analyses
    corecore