19 research outputs found

    GALC Deletions Increase the Risk of Primary Open-Angle Glaucoma: The Role of Mendelian Variants in Complex Disease

    Get PDF
    DNA copy number variants (CNVs) have been reported in many human diseases including autism and schizophrenia. Primary Open Angle Glaucoma (POAG) is a complex adult-onset disorder characterized by progressive optic neuropathy and vision loss. Previous studies have identified rare CNVs in POAG; however, their low frequencies prevented formal association testing. We present here the association between POAG risk and a heterozygous deletion in the galactosylceramidase gene (GALC). This CNV was initially identified in a dataset containing 71 Caucasian POAG cases and 478 ethnically matched controls obtained from dbGAP (study accession phs000126.v1.p1.) (p = 0.017, fisher's exact test). It was validated with array comparative genomic hybridization (arrayCGH) and realtime PCR, and replicated in an independent POAG dataset containing 959 cases and 1852 controls (p = 0.021, OR (odds ratio) = 3.5, 95% CI −1.1–12.0). Evidence for association was strengthened when the discovery and replication datasets were combined (p = 0.002; OR = 5.0, 95% CI 1.6–16.4). Several deletions with different endpoints were identified by array CGH of POAG patients. Homozygous deletions that eliminate GALC enzymatic activity cause Krabbe disease, a recessive Mendelian disorder of childhood displaying bilateral optic neuropathy and vision loss. Our findings suggest that heterozygous deletions that reduce GALC activity are a novel mechanism increasing risk of POAG. This is the first report of a statistically-significant association of a CNV with POAG risk, contributing to a growing body of evidence that CNVs play an important role in complex, inherited disorders. Our findings suggest an attractive biomarker and potential therapeutic target for patients with this form of POAG

    Genome-wide association study of primary open-angle glaucoma in continental and admixed African populations

    Get PDF
    Primary open angle glaucoma (POAG) is a complex disease with a major genetic contribution. Its prevalence varies greatly among ethnic groups, and is up to five times more frequent in black African populations compared to Europeans. So far, worldwide efforts to elucidate the genetic complexity of POAG in African populations has been limited. We conducted a genome-wide association study in 1113 POAG cases and 1826 controls from Tanzanian, South African and African American study samples. Apart from confirming evidence of association at TXNRD2 (rs16984299; OR[T] 1.20; P = 0.003), we found that a genetic risk score combining the effects of the 15 previously reported POAG loci was significantly associated with POAG in our samples (OR 1.56; 95% CI 1.26–1.93; P = 4.79 × 10−5). By genome-wide association testing we identified a novel candidate locus, rs141186647, harboring EXOC4 (OR[A] 0.48; P = 3.75 × 10−8), a gene transcribing a component of the exocyst complex involved in vesicle transport. The low frequency and high degree of genetic heterogeneity at this region hampered validation of this finding in predominantly West-African replication sets. Our results suggest that established genetic risk factors play a role in African POAG, however, they do not explain the higher disease load. The high heterogeneity within Africans remains a challenge to identify the genetic commonalities for POAG in this ethnicity, and demands studies of extremely large size

    Genome-wide meta-analysis identifies 127 open-angle glaucoma loci with consistent effect across ancestries

    Get PDF
    Primary open-angle glaucoma (POAG), is a heritable common cause of blindness world-wide. To identify risk loci, we conduct a large multi-ethnic meta-analysis of genome-wide association studies on a total of 34,179 cases and 349,321 controls, identifying 44 previously unreported risk loci and confirming 83 loci that were previously known. The majority of loci have broadly consistent effects across European, Asian and African ancestries. Cross-ancestry data improve fine-mapping of causal variants for several loci. Integration of multiple lines of genetic evidence support the functional relevance of the identified POAG risk loci and highlight potential contributions of several genes to POAG pathogenesis, including SVEP1, RERE, VCAM1, ZNF638, CLIC5, SLC2A12, YAP1, MXRA5, and SMAD6. Several drug compounds targeting POAG risk genes may be potential glaucoma therapeutic candidates. Primary open-angle glaucoma (POAG) is highly heritable, yet not well understood from a genetic perspective. Here, the authors perform a meta-analysis of genome-wide association studies in 34,179 POAG cases, identifying 44 previously unreported risk loci and mapping effects across multiple ethnicities

    Mitochondrial genetic background in Ghanaian patients with primary open-angle glaucoma

    Get PDF
    Purpose: Prevalence rates for primary open-angle glaucoma (POAG) are significantly higher in Africans than in European or Asians. It has been reported recently that mitochondrial DNA (mtDNA) lineages of African origin, excluding L2, conferred susceptibility to POAG in Saudi Arabia. This prompted us to test the role of mtDNA haplogroups in the incidence of POAG in the Ghanaian population who has a high frequency of L2 lineages. Methods: DNA was extracted from two independent cohorts of clinically diagnosed POAG patients (n=373) and healthy controls (n=451). All patients and controls were from Accra and Tema (the southern region of Ghana). The hypervariable region-I (HVS-I) and coding regions comprising mtDNA haplogroup diagnostic polymorphisms were polymerase chain reaction (PCR) amplified and sequenced in all patients and controls and the haplotypes obtained were assorted into haplogroups and their frequencies compared between cohorts. Results: No statistically significant differences were found in mtDNA haplogroup frequencies between POAG patients and matched controls in this cohort for the various mtDNA haplogroups tested. Conclusions: In this Ghanaian cohort, mtDNA haplogroups do not seem to confer susceptibility to POAG

    Investigation of Known Genetic Risk Factors for Primary Open Angle Glaucoma in Two Populations of African Ancestry

    No full text
    PURPOSE. Multiple genes have been associated with primary open angle glaucoma (POAG) in Caucasian populations. We now examine the association of these loci in populations of African ancestry, populations at particularly high risk for POAG. METHODS. We genotyped DNA samples from two populations: African American (1150 cases and 999 controls) and those from Ghana, West Africa (483 cases and 593 controls). Our analysis included 57 single nucleotide polymorphisms (SNPs) in five loci previously associated with POAG at the genome-wide level, including CDKN2B-AS1, TMCO1, CAV1/CAV2, chromosome 8q22 intergenic region, and SIX1/SIX6. We evaluated association in the full datasets, as well as subgroups with normal pressure glaucoma (NPG, maximum IOP ≤21 mm Hg) and high pressure glaucoma (HPG, IOP >21 mm Hg). RESULTS. In African Americans, we identified an association of rs10120688 in the CDNK2B-AS1 region with POAG (P = 0.0020). Several other SNPs were nominally associated, but did not survive correction for multiple testing. In the subgroup analyses, significant associations were identified for rs10965245 (P = 0.0005) in the CDKN2B-AS1 region with HPG and rs11849906 in the SIX1/SIX6 region with NPG (P = 0.006). No significant association was identified with any loci in the Ghanaian samples. CONCLUSIONS. POAG genetic susceptibility alleles associated in Caucasians appear to play a greatly reduced role in populations of African ancestry. Thus, the major genetic components of POAG of African origin remain to be identified. This finding underscores the critical need to pursue large-scale genome-wide association studies in this understudied, yet disproportionately affected population

    Three-Primer PCR assay for <i>GALC</i> deletion.

    No full text
    <p>(A) Schematic diagram of a portion of the <i>GALC</i> gene showing the region around the known GALC deletion. Both primers Del_P1 and Del_P3 are located outside of the deletion while primer Del_P2 is inside the deletion and close to the left breakpoint. (B) DNA samples with heterozygous deletion produced two DNA bands (329 bp and 615 bp in size) while DNA samples without GALC deletion generated one DNA band of 615 bp in size. The white arrow indicates the DNA sample with heterozygous deletion.</p

    Validation of <i>GALC</i> deletion with array CGH.

    No full text
    <p>The <i>GALC</i> deletion from <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0027134#pone-0027134-g001" target="_blank">Figure 1</a> was validated with high resolution chromosome 14 specific CGH array. This figure showed a 31 kb deletion in the <i>GALC</i> gene, indicated by the red line.</p
    corecore