223 research outputs found

    Severe Acquired Toxoplasmosis Caused by Wild Cycle of Toxoplasma gondii, French Guiana

    Get PDF
    From 1998 through 2006, 44 cases of severe primary toxoplasmosis were observed in French Guiana in immunocompetent adults. Toxoplasma gondii isolates exhibited an atypical multilocus genotype. Severe disease in humans may result from poor host adaptation to neotropical zoonotic strains of T. gondii circulating in a forest-based cycle

    Additional Haplogroups of Toxoplasma gondii out of Africa: Population Structure and Mouse-Virulence of Strains from Gabon

    Get PDF
    Prevalence of human toxoplasmosis in tropical African countries usually exceeds 50%. Its role as a major opportunistic infection of AIDS patients is regularly described. Due to the lack of investigation, congenital infection is certainly underestimated in Africa. Incidence of Toxoplasma ocular disease is higher in Africa and South America than in Europe. Severe cases in immunocompetent patients were described after infection acquired in Amazonia, but nothing is known about such cases in Africa. Several studies argued for a role of genotypes in the clinical expression of human toxoplasmosis, and for a geographical structuration of Toxoplasma across continents. Genetic data concerning isolates from Africa are scarce. Here, apart from the worldwide Type III, we described two main haplogroups, Africa 1 and 3. We detected genetic exchanges between urban centers favored by trade exchange and transportation. It shows how important human influence is, even in shaping the genetic structure of a zoonotic disease agent. Finding of identical haplogroups in South America suggested that these African and American strains share a common ancestor. As a higher pathogenicity in human of South American genotypes has been described, this similarity of genotypes should encourage further clinical studies with genotype analysis in Africa

    Caracterización biológica y molecular del aislamiento CIBMUQ/HDC, una cepa colombiana de referencia para Toxoplasma gondii.

    Get PDF
    There are few reports about characterization strains of Toxoplasma gondii that analyze the differences between isolates from Europe or United States with those obtained in South America. The current study analyzes virulence data from the mouse model, the gene SAG2 polymorphism by PCR-RFLP and microsatellite analysis in a single Colombian isolate. The strain was isolated from blood of a child with congenital toxoplasmosis, living in Armenia, Colombia. Analysis of virulence in the mouse showed that this strain has an LD100 of 10 tachyzoites. Both methods of genetic characterization demonstrated that this strain belonged to the clonal type 1 and was called HOM/CTCO/2002/CIBMUQ/BL/HDC (brief name: CIBMUQ/HDC). The CIBMUQ/HDC strain is the first Colombian strain available as a reference strain for national and international researchers.Existen pocos datos sobre la caracterización de cepas de Toxoplasma gondii que analicen las diferencias entre las cepas aisladas de casos humanos en Europa y Estados Unidos con cepas aisladas en Suramérica. Este trabajo presenta los resultados de la caracterización biológica basada en cultivo in vitro y análisis de virulencia en ratón, y la caracterización molecular obtenida por la amplificación del gen multicopia específico de T. gondii (B1), la genotipificación por PCR-RFLP del gen que codifica para el antígeno de membrana SAG2 y el análisis por microsatélites de un aislamiento clínico de toxoplasmosis congénita ocurrido en Armenia (Colombia). El análisis de virulencia en ratón demostró que esta cepa tenía una DL100 de 10 taquizoítos. La genotipificación y el análisis por microsatélites demostraron que esta cepa pertenecía al tipo clonal 1 y se denominó HOM/CTCO/2002/CIBMUQ/BL/HDC (nombre abreviado: CIBMUQ/HDC). CIBMUQ/HDC se encuentra disponible como cepa de referencia del país para estudios tanto a nivel nacional como internacional

    Phylogeography of Toxoplasma gondii points to a South American origin.

    Get PDF
    Toxoplasma gondii, a protozoan found ubiquitously in mammals and birds, is the etiologic agent of toxoplasmosis, a disease causing substantial public health burden worldwide, including about 200,000 new cases of congenital toxoplasmosis each year. Clinical severity has been shown to vary across geographical regions, with South America exhibiting the highest burden. Unfortunately, the drivers of these heterogeneities are still poorly understood, and the geographical origin and historical spread of the pathogen worldwide are currently uncertain. A worldwide sample of 168 T. gondii isolates gathered in 13 populations was sequenced for five fragments of genes (140 single nucleotide polymorphisms from 3153bp per isolate). Phylogeny based on Maximum likelihood methods with estimation of the time to the most recent common ancestor (TMRCA) and geostatistical analyses were performed for inferring the putative origin of T. gondii. We show that extant strains of the pathogen likely evolved from a South American ancestor, around 1.5 million years ago, and reconstruct the subsequent spread of the pathogen worldwide. This emergence is much more recent than the appearance of ancestral T. gondii, believed to have taken place about 11 My ago, and follows the arrival of felids in this part of the world. We posit that an ancestral lineage of T. gondii likely arrived in South America with felids and that the evolution of oral infectivity through carnivorism and the radiation of felids in this region enabled a new strain to outcompete the ancestral lineage and undergo a pandemic radiation

    Microscopic description of the beta delayed deuteron emission from \bbox{^6}He

    Full text link
    The beta delayed deuteron emission from 6^6He is studied in a dynamical microscopic cluster model. This model gives a reasonably good description for all the subsystems of 6^6He and 6^6Li in a coherent way, without any free parameter. The beta decay transition probability to the 6^6Li ground state is underestimated by a few percents. The theoretical beta delayed deuteron spectrum is close to experiment but it is also underestimated by about a factor 1.7. We argue that, in spite of their different magnitudes, both underestimations might have a common origin. The model confirms that the neutron halo part of the 6^6He wave function plays a crucial role in quenching the beta decay toward the α\alpha + d channel.Comment: LATEX with REVTEX, Submitted to Phys. Rev. C, 11 pages, 3 figures (not included) are available upon request. ATOMKI-93/

    Local Admixture of Amplified and Diversified Secreted Pathogenesis Determinants Shapes Mosaic \u3cem\u3eToxoplasma gondii\u3c/em\u3e Genomes

    Get PDF
    Toxoplasma gondii is among the most prevalent parasites worldwide, infecting many wild and domestic animals and causing zoonotic infections in humans. T. gondii differs substantially in its broad distribution from closely related parasites that typically have narrow, specialized host ranges. To elucidate the genetic basis for these differences, we compared the genomes of 62 globally distributed T. gondii isolates to several closely related coccidian parasites. Our findings reveal that tandem amplification and diversification of secretory pathogenesis determinants is the primary feature that distinguishes the closely related genomes of these biologically diverse parasites. We further show that the unusual population structure of T. gondii is characterized by clade-specific inheritance of large conserved haploblocks that are significantly enriched in tandemly clustered secretory pathogenesis determinants. The shared inheritance of these conserved haploblocks, which show a different ancestry than the genome as a whole, may thus influence transmission, host range and pathogenicity

    Transcriptional Analysis of Murine Macrophages Infected with Different Toxoplasma Strains Identifies Novel Regulation of Host Signaling Pathways

    Get PDF
    Most isolates of Toxoplasma from Europe and North America fall into one of three genetically distinct clonal lineages, the type I, II and III lineages. However, in South America these strains are rarely isolated and instead a great variety of other strains are found. T. gondii strains differ widely in a number of phenotypes in mice, such as virulence, persistence, oral infectivity, migratory capacity, induction of cytokine expression and modulation of host gene expression. The outcome of toxoplasmosis in patients is also variable and we hypothesize that, besides host and environmental factors, the genotype of the parasite strain plays a major role. The molecular basis for these differences in pathogenesis, especially in strains other than the clonal lineages, remains largely unexplored. Macrophages play an essential role in the early immune response against T. gondii and are also the cell type preferentially infected in vivo. To determine if non-canonical Toxoplasma strains have unique interactions with the host cell, we infected murine macrophages with 29 different Toxoplasma strains, representing global diversity, and used RNA-sequencing to determine host and parasite transcriptomes. We identified large differences between strains in the expression level of known parasite effectors and large chromosomal structural variation in some strains. We also identified novel strain-specifically regulated host pathways, including the regulation of the type I interferon response by some atypical strains. IFNβ production by infected cells was associated with parasite killing, independent of interferon gamma activation, and dependent on endosomal Toll-like receptors in macrophages and the cytoplasmic receptor retinoic acid-inducible gene 1 (RIG-I) in fibroblasts.National Institutes of Health (U.S.) (R01-AI080621)New England Regional Center of Excellence for Biodefense and Emerging Infectious Diseases (Developmental Grant AIO57159)Pew Charitable Trusts (Biomedical Scholars Program)Robert A. Swanson Career Development awardThe Knights Templar Eye Foundation, Inc.Pre-Doctoral Grant in the Biological Sciences (5-T32-GM007287-33)Cleo and Paul Schimmel Foundatio
    corecore