68 research outputs found

    Analysis of Blood Flow through Viscoelastic Blood Vessel

    Get PDF
    Analysis of viscoelastic material can be done through ansys multi physics software. For modelling viscoelastic materials, prony series coefficients had been generated from the stress relaxation data (shear modulus vs. time) using prony series curve fitting. Also, Ansys was used to study the fluid interaction on viscoelastic materials. First blood vessel was modelled using geometric modeller and it is exported to ansys and using prony series curve fitting, viscoelastic properties are given to the blood vessel. Blood flow was modelled in CFX. Two way coupling was established between Ansys and CFX. And the boundary conditions such as pressure pulse and mass flow rate was given to the blood flow. Then the model was solved in CFX. And the variation of pressure, von mises stress and total mesh displacement along the length of blood vessel is plotted

    Generative Model for Conceptual Design of Defence Equipment

    Get PDF
    Requirement study and analysis forms a key component in conceptual design of new products and systems. For complex systems like defence equipment, concept design is very important and should primarily satisfy all user requirements. Brings out a new generative model for concept design of defence systems using principles of systems engineering. A structured model and methodology is presented starting from capturing the user requirements, developing multiple solutions, short listing the candidate solutions and finally selecting one or two feasible designs. The model and process is illustrated with the help of a case study on the development of a torpedo defence system for naval ships.

    Effect of Feeding Frequencies on Growth and Profit of Asian Seabass (Lates calcarifer) in Cage Culture Systems

    Get PDF
    Cage culture is one of the most advanced aquaculture production systems where fishes are held in floating enclosures like net cages, moored in the open water systems, and allow free water flow. The open water cages developed by Central Marine Fisheries Research Institute (CMFRI) during the last decade are becoming very popular in coastal waters. One of the major problems faced by farmers at all stages of culture is fish feed and feeding. A suitable feeding strategy is important to improve fish growth and reduce feed costs and environmental pollution. The study was conducted to investigate the effect of feeding frequency from sea bass cultured in cages on water quality, growth parameters, survival rate, economic return and bottom characters in Moothakunnam (N10011.478’ E076011.901’+ 4m) in Ernakulam district. Water and sediment samples and growth parameters were collected and analyzed monthly from inside and outside of the cages for a period of one year. Significant differences were found in growth parameters like weight gain (1.04±0.03-1.78±0.008), Specific growth rate (1.2±0.03-1.48±0.005), Survival rate (40%-61.53%) and FCR (4.3-4.56). The water quality parameters DO, Nitrate, Nitrite, Ammonia and Orthophosphate in the cage and reference sites did not show many significant variations indicating a healthy growth condition in the cages. Therefore it could be concluded that the growth performance of sea bass is increasing by feeding frequency, but the economic analysis indicated that net profit is negatively related to feeding frequency

    Studies on the diversity and impact of macro biofouling organisms in brackish water finfish cage

    Get PDF
    Biofouling refers to accumulation of organisms on submerged surfaces. In case of open water cage culture, fouling organisms attached to cage nets block water flow and reduces waste removal resulting in increased stress levels on stocked fishes and reduces the rate of intake of feed and growth. It also increases weight of the nets leading to its damage. The quantity and diversity of biofouling organisms and their effects on the growth and survival of stocked fishes were studied

    Simultaneous identification of Chlamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma genitalium, and Trichomonas vaginalis ‒ multicenter evaluation of the Alinity m STI assay

    Get PDF
    Abstract Objectives Accurate and rapid diagnosis of sexually transmitted infections (STIs) is essential for timely administration of appropriate treatment and reducing the spread of the disease. We examined the performance of the new Alinity m STI assay, a qualitative real-time multiplex PCR test for simultaneous identification of Chlamydia trachomatis (CT), Neisseria gonorrhoeae (NG), Mycoplasma genitalium (MG), and Trichomonas vaginalis (TV) run on the fully automated Alinity m platform. Methods This international, multicenter study evaluated the accuracy, reproducibility, and clinical performance of the Alinity m STI assay compared to commonly used STI assays in a large series of patient samples encountered in clinical practice. Results The Alinity m STI assay identified accurately and precisely single and mixed pathogens from an analytical panel of specimens. The Alinity m STI assay demonstrated high overall agreement rates with comparator STI assays (99.6% for CT [n=2,127], 99.2% for NG [n=2,160], 97.1% for MG [n=491], and 99.4% for TV [n=313]). Conclusions The newly developed Alinity m STI assay accurately detects the 4 sexually transmitted target pathogens in various collection devices across clinically relevant specimen types, regardless of single or mixed infection status

    Improved molecular laboratory productivity by consolidation of testing on the new random-access analyzer Alinity m

    Get PDF
    Abstract Objectives Automated molecular analyzers have accelerated diagnosis, allowing earlier intervention and better patient follow-up. A recently developed completely automated molecular analyzer, Alinity™ m (Abbott), offers consolidated, continuous, and random-access testing that may improve molecular laboratory workflow. Methods An international, multicenter study compared laboratory workflow metrics across various routine analyzers and Alinity m utilizing assays for human immunodeficiency virus type 1 (HIV-1), hepatitis C virus (HCV), hepatitis B virus (HBV), high-risk human papillomavirus (HR HPV), and sexually transmitted infection (STI) (Chlamydia trachomatis [CT]/Neisseria gonorrhoeae [NG]/Trichomonas vaginalis [TV]/Mycoplasma genitalium [MG]). Three turnaround times (TATs) were assessed: total TAT (sample arrival to result), sample onboard TAT (sample loading and test starting to result), and processing TAT (sample aspiration to result). Results Total TAT was reduced from days with routine analyzers to hours with Alinity m, independent of requested assays. Sample onboard TATs for standard workflow using routine analyzers ranged from 7 to 32.5 h compared to 2.75–6 h for Alinity m. The mean sample onboard TAT for STAT samples on Alinity m was 2.36 h (±0.19 h). Processing TATs for Alinity m were independent of the combination of assays, with 100% of results reported within 117 min. Conclusions The consolidated, continuous, random-access workflow of Alinity m reduces TATs across various assays and is expected to improve both laboratory operational efficiency and patient care

    Multicenter clinical comparative evaluation of Alinity m HIV-1 assay performance.

    Get PDF
    Abstract Background Accurate, rapid detection of HIV-1 RNA is critical for early diagnosis, treatment decision making, and long-term management of HIV-1 infection. Objective We evaluated the diagnostic performance of the Alinity m HIV-1 assay, which uses a dual target/dual probe design against highly conserved target regions of the HIV-1 genome and is run on the fully automated Alinity m platform. Study design This was an international, multisite study that compared the diagnostic performance of the Alinity m HIV-1 assay to four commercially available HIV-1 assays routinely used in nine independent clinical laboratories. Alinity m HIV-1 assay precision, detectability, and reproducibility was compared across four study sites. Results The Alinity m HIV-1 assay produced comparable results to currently available HIV-1 assays (correlation coefficient >0.995), with an overall bias of -0.1 to 0.10 Log10 copies/mL. The Alinity m HIV-1 assay and its predecessor m2000 HIV-1 assay demonstrated comparable detection of 16 different HIV-1 subtypes (R2 = 0.956). A high level of agreement (>88 %) between all HIV-1 assays was seen near clinical decision points of 1.7 Log10 copies/mL (50 copies/mL) and 2.0 Log10 copies/mL (200 copies/mL). Alinity m HIV-1 assay precision was 0.08 and 0.21 Log10 copies/mL at VLs of 1000 and 50 copies/mL, respectively, with a high level of detectability (≥97 % hit rate) and reproducibility across sites. Conclusions The Alinity m HIV-1 assay provides comparable diagnostic accuracy to current HIV-1 assays, and when run on the Alinity m system, has the capacity to shorten the time between diagnosis and treatment

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
    corecore