60 research outputs found

    Distribution and diversity of Polyporaceae in Western India: An overview and addition to mycoflora of the Gujarat state

    Get PDF
    Extensive fieldwork in different climatic regimes of Gujarat state during last four years resulted in the collection of more than 349 fungal species. Out of these, 37 species from 20 genera were found to be from the family Polyporaceae. Among these, five species are being reported for the first time here as new distribution records. The highest number of species is represented by the genus Trametes while, Cerrena unicolo, Neolentinus kauffmanii, Dichomitus squalens, Panus conchatus and Laetiporus sulphureus possessed single species each

    Photoacoustic Detection of Circulating Prostate, Breast and Pancreatic Cancer cells using targeted Gold Nanoparticles: Implications of Green Nanotechnology in Molecular Imaging

    Get PDF
    Nanoscience Poster SessionCirculating tumor cells are hallmarks of metastasis cancer. The presence of circulating tumor cells in blood stream correlates with the severity of disease. Photoacoustic imaging (PA) of tumor cells is an attractive technique for potential applications in diagnostic imaging of circulating tumor cells. However, the sensitivity of photoacoustic imaging of tumor cells depends on their photon absorption characteristics. In this context, gold nanoparticle embedded tumor cells offer significant advantages for diagnostic PA of single cells. As the PA absorptivity is directly proportional to the number of nanoparticles embedded within tumor cells, the propensity of nanoparticles to internalize within tumor cells will dictate the sensitivity for single cell detection. We are developing biocompatible gold nanoparticles to use them as probes as part of our ongoing effort toward the application of X ray CT Imaging, Ultra Sound (US) and photoacoustic imaging of circulating breast, pancreatic and prostate tumor cells. We, herein report our latest results which have shown that epigallocatechin gallate (EGCG)-conjugated gold nanoparticles (EGCG-AuNPs) internalize selectively within cancer cells providing threshold concentrations required for photo acoustic signals. In this presentation, we will describe, our recent results on the synthesis and characterization of EGCG gold nanoparticles, their cellular internalization and photo acoustic imaging of PC-3 prostate cancer cells and PANC-1 pancreatic cancer cells

    Human surfactant protein D alters oxidative stress and HMGA1 expression to induce p53 apoptotic pathway in eosinophil leukemic cell line

    Get PDF
    This article is made available through the Brunel Open Access Publishing Fund. Copyright: Β© 2013 Mahajan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Surfactant protein D (SP-D), an innate immune molecule, has an indispensable role in host defense and regulation of inflammation. Immune related functions regulated by SP-D include agglutination of pathogens, phagocytosis, oxidative burst, antigen presentation, T lymphocyte proliferation, cytokine secretion, induction of apoptosis and clearance of apoptotic cells. The present study unravels a novel ability of SP-D to reduce the viability of leukemic cells (eosinophilic leukemic cell line, AML14.3D10; acute myeloid leukemia cell line, THP-1; acute lymphoid leukemia cell lines, Jurkat, Raji; and human breast epithelial cell line, MCF-7), and explains the underlying mechanisms. SP-D and a recombinant fragment of human SP-D (rhSP-D) induced G2/M phase cell cycle arrest, and dose and timedependent apoptosis in the AML14.3D10 eosinophilic leukemia cell line. Levels of various apoptotic markers viz. activated p53, cleaved caspase-9 and PARP, along with G2/M checkpoints (p21 and Tyr15 phosphorylation of cdc2) showed significant increase in these cells. We further attempted to elucidate the underlying mechanisms of rhSP-D induced apoptosis using proteomic analysis. This approach identified large scale molecular changes initiated by SPD in a human cell for the first time. Among others, the proteomics analysis highlighted a decreased expression of survival related proteins such as HMGA1, overexpression of proteins to protect the cells from oxidative burst, while a drastic decrease in mitochondrial antioxidant defense system. rhSP-D mediated enhanced oxidative burst in AML14.3D10 cells was confirmed, while antioxidant, N-acetyl-L-cysteine, abrogated the rhSP-D induced apoptosis. The rhSP-D mediated reduced viability was specific to the cancer cell lines and viability of human PBMCs from healthy controls was not affected. The study suggests involvement of SP-D in host’s immunosurveillance and therapeutic potential of rhSP-D in the eosinophilic leukemia and cancers of other origins.Department of Biotechnology, Indi

    Surfactant protein D inhibits HIV-1 infection of target cells via interference with gp120-CD4 interaction and modulates pro-inflammatory cytokine production

    Get PDF
    Β© 2014 Pandit et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Surfactant Protein SP-D, a member of the collectin family, is a pattern recognition protein, secreted by mucosal epithelial cells and has an important role in innate immunity against various pathogens. In this study, we confirm that native human SP-D and a recombinant fragment of human SP-D (rhSP-D) bind to gp120 of HIV-1 and significantly inhibit viral replication in vitro in a calcium and dose-dependent manner. We show, for the first time, that SP-D and rhSP-D act as potent inhibitors of HIV-1 entry in to target cells and block the interaction between CD4 and gp120 in a dose-dependent manner. The rhSP-D-mediated inhibition of viral replication was examined using three clinical isolates of HIV-1 and three target cells: Jurkat T cells, U937 monocytic cells and PBMCs. HIV-1 induced cytokine storm in the three target cells was significantly suppressed by rhSP-D. Phosphorylation of key kinases p38, Erk1/2 and AKT, which contribute to HIV-1 induced immune activation, was significantly reduced in vitro in the presence of rhSP-D. Notably, anti-HIV-1 activity of rhSP-D was retained in the presence of biological fluids such as cervico-vaginal lavage and seminal plasma. Our study illustrates the multi-faceted role of human SPD against HIV-1 and potential of rhSP-D for immunotherapy to inhibit viral entry and immune activation in acute HIV infection. Β© 2014 Pandit et al.The work (Project no. 2011-16850) was supported by Medical Innovation Fund of Indian Council of Medical Research, New Delhi, India (www.icmr.nic.in/)

    Differential expression of collectins in human placenta and role in inflammation during spontaneous Labor.

    Get PDF
    Β© 2014 Yadav et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Collectins, collagen-containing Ca2+ dependent C-type lectins and a class of secretory proteins including SP-A, SP-D and MBL, are integral to immunomodulation and innate immune defense. In the present study, we aimed to investigate their placental transcript synthesis, labor associated differential expression and localization at feto-maternal interface, and their functional implication in spontaneous labor. The study involved using feto-maternal interface (placental/decidual tissues) from two groups of healthy pregnant women at term (β‰₯37 weeks of gestation), undergoing either elective C-section with no labor ('NLc' group, nβ€Š=β€Š5), or normal vaginal delivery with spontaneous labor ('SLv' group, nβ€Š=β€Š5). The immune function of SP-D, on term placental explants, was analyzed for cytokine profile using multiplexed cytokine array. SP-A, SP-D and MBL transcripts were observed in the term placenta. The 'SLv' group showed significant up-regulation of SP-D (pβ€Š=β€Š0.001), and down-regulation of SP-A (pβ€Š=β€Š0.005), transcripts and protein compared to the 'NLc' group. Significant increase in 43 kDa and 50 kDa SP-D forms in placental and decidual tissues was associated with the spontaneous labor (p<0.05). In addition, the MMP-9-cleaved form of SP-D (25 kDa) was significantly higher in the placentae of 'SLv' group compared to the 'NLc' group (pβ€Š=β€Š0.002). Labor associated cytokines IL-1Ξ±, IL-1Ξ², IL-6, IL-8, IL-10, TNF-Ξ± and MCP-1 showed significant increase (p<0.05) in a dose dependent manner in the placental explants treated with nSP-D and rhSP-D. In conclusion, the study emphasizes that SP-A and SP-D proteins associate with the spontaneous labor and SP-D plausibly contributes to the pro-inflammatory immune milieu of feto-maternal tissues.Funding provided by BT/PR15227/BRB/10/906/2011) Department of Biotechnology (DBT), Government of India http://dbtindia.nic.in/index.asp (TM) and Indian Council of Medical Research (ICMR) Junior Research Fellowship (JRF)/Senior Research Fellowship (SRF), Government of India, www.icmr.nic.in (AKY)

    Software-Hardware Co-design for Fast and Scalable Training of Deep Learning Recommendation Models

    Full text link
    Deep learning recommendation models (DLRMs) are used across many business-critical services at Facebook and are the single largest AI application in terms of infrastructure demand in its data-centers. In this paper we discuss the SW/HW co-designed solution for high-performance distributed training of large-scale DLRMs. We introduce a high-performance scalable software stack based on PyTorch and pair it with the new evolution of Zion platform, namely ZionEX. We demonstrate the capability to train very large DLRMs with up to 12 Trillion parameters and show that we can attain 40X speedup in terms of time to solution over previous systems. We achieve this by (i) designing the ZionEX platform with dedicated scale-out network, provisioned with high bandwidth, optimal topology and efficient transport (ii) implementing an optimized PyTorch-based training stack supporting both model and data parallelism (iii) developing sharding algorithms capable of hierarchical partitioning of the embedding tables along row, column dimensions and load balancing them across multiple workers; (iv) adding high-performance core operators while retaining flexibility to support optimizers with fully deterministic updates (v) leveraging reduced precision communications, multi-level memory hierarchy (HBM+DDR+SSD) and pipelining. Furthermore, we develop and briefly comment on distributed data ingestion and other supporting services that are required for the robust and efficient end-to-end training in production environments

    Cell-Specific mRNA Therapeutics for Cardiovascular Diseases and Regeneration

    No full text
    Cardiovascular diseases (CVDs) represent a significant global health burden, demanding innovative therapeutic approaches. In recent years, mRNA therapeutics have emerged as a promising strategy to combat CVDs effectively. Unlike conventional small-molecule drugs, mRNA therapeutics enable the direct modulation of cellular functions by delivering specific mRNA molecules to target cells. This approach offers unprecedented advantages, including the ability to harness endogenous cellular machinery for protein synthesis, thus allowing precise control over gene expression without insertion into the genome. This review summarizes the current status of the potential of cell-specific mRNA therapeutics in the context of cardiovascular diseases. First, it outlines the challenges associated with traditional CVD treatments and emphasizes the need for targeted therapies. Subsequently, it elucidates the underlying principles of mRNA therapeutics and the development of advanced delivery systems to ensure cell-specificity and enhanced efficacy. Notably, innovative delivery methods such as lipid nanoparticles and exosomes have shown promise in improving the targeted delivery of mRNA to cardiac cells, activated fibroblasts, and other relevant cell types. Furthermore, the review highlights the diverse applications of cell-specific mRNA therapeutics in addressing various aspects of cardiovascular diseases, including atherosclerosis, myocardial infarction, heart failure, and arrhythmias. By modulating key regulatory genes involved in cardiomyocyte proliferation, inflammation, angiogenesis, tissue repair, and cell survival, mRNA therapeutics hold the potential to intervene at multiple stages of CVD pathogenesis. Despite its immense potential, this abstract acknowledges the challenges in translating cell-specific mRNA therapeutics from preclinical studies to clinical applications like off-target effects and delivery. In conclusion, cell-specific mRNA therapeutics have emerged as a revolutionary gene therapy approach for CVD, offering targeted interventions with the potential to significantly improve patient outcomes

    Cardiovascular Manifestations of COVID-19 Infection

    No full text
    SARS-CoV-2 induced the novel coronavirus disease (COVID-19) outbreak, the most significant medical challenge in the last century. COVID-19 is associated with notable increases in morbidity and death worldwide. Preexisting conditions, like cardiovascular disease (CVD), diabetes, hypertension, and obesity, are correlated with higher severity and a significant increase in the fatality rate of COVID-19. COVID-19 induces multiple cardiovascular complexities, such as cardiac arrest, myocarditis, acute myocardial injury, stress-induced cardiomyopathy, cardiogenic shock, arrhythmias and, subsequently, heart failure (HF). The precise mechanisms of how SARS-CoV-2 may cause myocardial complications are not clearly understood. The proposed mechanisms of myocardial injury based on current knowledge are the direct viral entry of the virus and damage to the myocardium, systemic inflammation, hypoxia, cytokine storm, interferon-mediated immune response, and plaque destabilization. The virus enters the cell through the angiotensin-converting enzyme-2 (ACE2) receptor and plays a central function in the virus&rsquo;s pathogenesis. A systematic understanding of cardiovascular effects of SARS-CoV2 is needed to develop novel therapeutic tools to target the virus-induced cardiac damage as a potential strategy to minimize permanent damage to the cardiovascular system and reduce the morbidity. In this review, we discuss our current understanding of COVID-19 mediated damage to the cardiovascular system
    • …
    corecore