15 research outputs found
A Hard Scientific Quest: Understanding Voluntary Movements
In this article we explore the complexities of what goes on in the brain when one wishes to perform even the simplest everyday movements. In doing so, we describe experiments indicating that the spinal cord interneurons are organized in functional modules and that each module activates a distinct set of muscles. Through these modules the central nervous system has found a simple solution to controlling the large number of muscle fibers active even during the execution of the simplest action. We also explore the many different neural signals that contribute to pattern formations, including afferent information from the limbs and information of motor memories.National Science Foundation (U.S.) (Grant IIS-0904594)National Institutes of Health (U.S.) (Grant NS44393)National Institutes of Health (U.S.) (Grant NS068103
First insights into the vertical habitat use of the whitespotted eagle ray Aetobatus narinari revealed by popâup satellite archival tags
The whitespotted eagle ray Aetobatus narinari is a tropical to warmâtemperate benthopelagic batoid that ranges widely throughout the western Atlantic Ocean. Despite conservation concerns for the species, its vertical habitat use and diving behaviour remain unknown. Patterns and drivers in the depth distribution of A. narinari were investigated at two separate locations, the western North Atlantic (Islands of Bermuda) and the eastern Gulf of Mexico (Sarasota, Florida, U.S.A.). Between 2010 and 2014, seven popâup satellite archival tags were attached to A. narinari using three methods: a throughâtail suture, an external tailâband and throughâwing attachment. Retention time ranged from 0 to 180âdays, with tags attached via the throughâtail method retained longest. Tagged rays spent the majority of time (82.85â±â12.17% S.D.) within the upper 10 m of the water column and, with one exception, no rays travelled deeper than ~26âm. One Bermuda ray recorded a maximum depth of 50.5 m, suggesting that these animals make excursions off the foreâreef slope of the Bermuda Platform. Individuals occupied deeper depths (7.42â±â3.99âm S.D.) during the day versus night (4.90â±â2.89âm S.D.), which may be explained by foraging and/or predator avoidance. Each individual experienced a significant difference in depth and temperature distributions over the diel cycle. There was evidence that mean hourly depth was best described by location and individual variation using a generalized additive mixed model approach. This is the first study to compare depth distributions of A. narinari from different locations and describe the thermal habitat for this species. Our study highlights the importance of region in describing A. narinari depth use, which may be relevant when developing management plans, whilst demonstrating that diel patterns appear to hold across individuals
Diving into the vertical dimension of elasmobranch movement ecology
Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements
Diving into the vertical dimension of elasmobranch movement ecology
Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements
Diving into the vertical dimension of elasmobranch movement ecology
Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements
Influence of offshore oil and gas structures on seascape ecological connectivity.
Offshore platforms, subsea pipelines, wells and related fixed structures supporting the oil and gas (O&G) industry are prevalent in oceans across the globe, with many approaching the end of their operational life and requiring decommissioning. Although structures can possess high ecological diversity and productivity, information on how they interact with broader ecological processes remains unclear. Here, we review the current state of knowledge on the role of O&G infrastructure in maintaining, altering or enhancing ecological connectivity with natural marine habitats. There is a paucity of studies on the subject with only 33 papers specifically targeting connectivity and O&G structures, although other studies provide important related information. Evidence for O&G structures facilitating vertical and horizontal seascape connectivity exists for larvae and mobile adult invertebrates, fish and megafauna; including threatened and commercially important species. The degree to which these structures represent a beneficial or detrimental net impact remains unclear, is complex and ultimately needs more research to determine the extent to which natural connectivity networks are conserved, enhanced or disrupted. We discuss the potential impacts of different decommissioning approaches on seascape connectivity and identify, through expert elicitation, critical knowledge gaps that, if addressed, may further inform decision making for the life cycle of O&G infrastructure, with relevance for other industries (e.g. renewables). The most highly ranked critical knowledge gap was a need to understand how O&G structures modify and influence the movement patterns of mobile species and dispersal stages of sessile marine species. Understanding how different decommissioning options affect species survival and movement was also highly ranked, as was understanding the extent to which O&G structures contribute to extending species distributions by providing rest stops, foraging habitat, and stepping stones. These questions could be addressed with further dedicated studies of animal movement in relation to structures using telemetry, molecular techniques and movement models. Our review and these priority questions provide a roadmap for advancing research needed to support evidence-based decision making for decommissioning O&G infrastructure
Integrative Benchmarking to Advance Neurally Mechanistic Models of Human Intelligence
© 2020 The Author(s) A potentially organizing goal of the brain and cognitive sciences is to accurately explain domains of human intelligence as executable, neurally mechanistic models. Years of research have led to models that capture experimental results in individual behavioral tasks and individual brain regions. We here advocate for taking the next step: integrating experimental results from many laboratories into suites of benchmarks that, when considered together, push mechanistic models toward explaining entire domains of intelligence, such as vision, language, and motor control. Given recent successes of neurally mechanistic models and the surging availability of neural, anatomical, and behavioral data, we believe that now is the time to create integrative benchmarking platforms that incentivize ambitious, unified models. This perspective discusses the advantages and the challenges of this approach and proposes specific steps to achieve this goal in the domain of visual intelligence with the case study of an integrative benchmarking platform called Brain-Score
Electrochemical modulation enhances the selectivity of peripheral neurostimulation in vivo
Significance
Bioelectronic medicine relies on electrical stimulation for most applications in the peripheral nervous system. It faces persistent challenges in selectively activating bundled nerve fibers. Here, we investigated ion-concentration modulation with ion-selective membranes and whether this modality may enhance the functional selectivity of peripheral nerve stimulation. We designed a multimodal stimulator that could control Ca
2+
concentrations within a focused volume. Acutely implanting it on the sciatic nerve of a rat, we demonstrated that Ca
2+
depletion could increase the sensitivity of the nerve to electrical stimulation in vivo. We provided evidence that it selectively influenced individual fascicles of the nerve, allowing selective activation by electrical current. Improved functional selectivity may improve outcomes for important therapeutic modalities.
</jats:p
Rapid and Low Cost Manufacturing of Cuff Electrodes
© Copyright © 2021 Flavin, Paul, Lim, Abdulhamed, Lissandrello, Ajemian, Lin and Han. For many peripheral neuro-modulation applications, the cuff electrode has become a preferred technology for delivering electrical current into targeted volumes of tissue. While basic cuffs with low spatial selectivity, having longitudinally arranged contacts, can be produced from relatively straightforward processes, the fabrication of more complex electrode configurations typically requires iterative design and clean-room fabrication with skilled technicians. Although facile methods for fabricating cuff electrodes exist, their inconsistent products have limited their adoption for rapid manufacturing. In this article, we report a fast, low-cost fabrication process for patterning of electrode contacts in an implantable peripheral nerve cuff. Using a laser cutter as we have prescribed, the designer can render precise contact geometries that are consistent between batches. This method is enabled by the use of silicone/carbon black (CB) composite electrodes, which integrate with the patterned surface of its substrateâtubular silicone insulation. The size and features of its products can be adapted to fit a wide range of nerve diameters and applications. In this study, we specifically documented the manufacturing and evaluation of circumpolar cuffs with radial arrays of three contacts for acute implantation on the rat sciatic nerve. As part of this method, we also detail protocols for verificationâelectrochemical characterizationâand validationâelectrophysiological evaluationâof implantable cuff electrodes. Applied to our circumpolar cuff electrode, we report favorable electrical characteristics. In addition, we report that it reproduces expected electrophysiological behaviors described in prior literature. No specialized equipment or fabrication experience was required in our production, and we encountered negligible costs relative to commercially available solutions. Since, as we demonstrate, this process generates consistent and precise electrode geometries, we propose that it has strong merits for use in rapid manufacturing