41 research outputs found

    Mechanical behavior of alkali-cement as function of the temperature.

    Full text link
    This investigation reports on a comparative study of the mechanical behavior at different temperatures of three different alkali-activated fly ash pastes chemically activated using sodium silicate. A control Portland cement (OPC) was used as a reference. In an attempt to simulate the conditions prevailing in the event of accidental fire, post-thermal mechanical tests were performed to determine the residual strength. It has therefore been established that FA based cements can be fabricated for construction purposes and these materials have great potential for fire resistance applications

    Quantitative imaging of hybrid chiral spin textures in magnetic multilayer systems by Lorentz microscopy

    Get PDF
    Chiral magnetic textures in ultrathin perpendicularly magnetised multilayer film stacks with an interfacial Dzyaloshinskii-Moriya interaction have been the focus of much research recently. The chirality associated with the broken inversion symmetry at the interface between an ultrathin ferromagnetic layer and a heavy metal with large spin-orbit coupling supports homochiral N\'eel domain walls and hedgehog (N\'eel) skyrmions. Under spin-orbit torques these N\'eel type magnetic structures are predicted, and have been measured, to move at high velocities. However recent studies have indicated that some multilayered systems may possess a more complex hybrid domain wall configuration, due to the competition between interfacial DMI and interlayer dipolar fields. These twisted textures are expected to have thickness dependent N\'eel and Bloch contributions to the domain or skyrmion walls. In this work, we use the methods of Lorentz microscopy to measure quantitatively for the first time experimentally both; i) the contributions of the N\'eel and Bloch contributions and ii) their spatial spin variation at high resolution. These are compared with modelled and simulated structures which are in excellent agreement with our experimental results. Our quantitative analysis provides powerful direct evidence of the Bloch wall component which exists in these hybrid walls and will be significant when exploiting such phenomena in spintronic applications.Comment: 12 page

    Note: Vectorial-magneto optical Kerr effect technique combined with variable temperature and full angular range all in a single setup

    Full text link
    Here, we report on a versatile full angular resolved/broad temperature range/vectorial magneto optical Kerr effect (MOKE) magnetometer, named TRISTAN. Its versatility relies on its capacity to probe temperature and angular dependencies of magnetization reversal processes without the need to do any intervention on the apparatus during measurements. The setup is a combination of a vectorial MOKE bench and a cryostat with optical access. The cryostat has a motorized rotatable sample holder with azimuthal correction. It allows for simultaneous and quantitative acquisition of the two in-plane magnetization components during the hysteresis loop at different temperatures from 4 K up to 500 K and in the whole angular range, without neither changing magnet orientation nor opening the cryostat. Measurements performed in a model system with competing collinear biaxial and uniaxial contributions are presented to illustrate its capabilitiesP.P. acknowledges financial support from MINECO through Contract No. JCI-2011- 09602. F.J.T. acknowledges financial support from Ramon y Cajal program (RYC-2011-09617). This work has been supported by MINECO through Project Nos. MAT2011-25598 and MAT2012-39308, by the Comunidad de Madrid through Project No. S2013/MIT-2850 NANOFRONTMAG-CM and by EU-FP7 through NANOPYME Project (No. 310516

    Emergence of the Stoner-Wohlfarth astroid in thin films at dynamic regime

    Full text link
    The Stoner-Wohlfarth (SW) model is the simplest model that describes adequately the magnetization reversal of nanoscale systems that are small enough to contain single magnetic domains. However for larger sizes where multi-domain effects are present, e.g., in thin films, this simple macrospin approximation fails and the experimental critical curve, referred as SW astroid, is far from its predictions. Here we show that this discrepancy could vanish also in extended system. We present a detailed angular-dependent study of magnetization reversal dynamics of a thin film with well-defined uniaxial magnetic anisotropy, performed over 9 decades of applied field sweep rate (dH/dt). The angular-dependent properties display a gradual transition from domain wall pinning and motion-like behaviour to a nucleative single-particle one, as dH/dt increases. Remarkably, in the high dynamic regime, where nucleation of reversed domains is the dominant mechanism of the magnetization reversal (nucleative regime), the magnetic properties including the astroid become closer to the ones predicted by SW model. The results also show why the SW model can successfully describe other extended systems that present nucleative regime, even in quasi-static conditionsThis work has been supported by MINECO (Ministerio de Economía y Competitividad) through Projects No. MAT2012-39308, FIS2015-67287-P, and FIS2016-78591-C3-1-R, by the Comunidad de Madrid through Project S2013/MIT-2850 NANOFRONTMAG-CM, and by MINECO through the FLAGERA Programme of Graphene Flagship: SOgraph project (No. PCIN-2015-216); and M-era.Net Programme: NEXMAG project (PCIN- 2015-126). IMDEA-Nanociencia acknowledges support from the ‘Severo Ochoa’ Program for Centres of Excellence in R&D (MINECO, Grant SEV-2016-0686). P.P. acknowledges support through the Marie Curie AMAROUT EU Programme and JCI-2011-09602. A.B. acknowledges MINECO through the ENMA-National project (MAT2014-56955-R)

    Interfacial exchange-coupling induced chiral symmetry breaking of spin-orbit effects

    Full text link
    We demonstrate that the interfacial exchange coupling in ferromagnetic/antiferromagnetic (FM/AFM) systems induces symmetry breaking of the spin-orbit (SO) effects. This has been done by studying the field and angle dependencies of anisotropic magnetoresistance and vectorial-resolved magnetization hysteresis loops, measured simultaneously and reproduced with numerical simulations. We show how the induced unidirectional magnetic anisotropy at the FM/AFM interface results in strong asymmetric transport behaviors, which are chiral around the magnetization hard-axis direction. Similar asymmetric features are anticipated in other SO-driven phenomenaThis work was supported in part by the Spanish MINECO through Projects No. MAT2012-39308, No. FIS2013-40667-P, No. MAT2011-25598, and No. MAT2014-52477-C5-3-P, and by the Comunidad de Madrid through Project No. S2013/MIT-2850 (NANOFRONTMAG-CM). P.P. and A.B. acknowledge support through the Marie Curie AMAROUT EU Programme, and through MINECO “Juan de la Cierva” (JCI-2011-09602) and “Ramón y Cajal” contract
    corecore