16 research outputs found

    Quantum confined peptide assemblies with tunable visible to near-infrared spectral range

    Get PDF
    Quantum confined materials have been extensively studied for photoluminescent applications. Due to intrinsic limitations of low biocompatibility and challenging modulation, the utilization of conventional inorganic quantum confined photoluminescent materials in bio-imaging and bio-machine interface faces critical restrictions. Here, we present aromatic cyclo-dipeptides that dimerize into quantum dots, which serve as building blocks to further self-assemble into quantum confined supramolecular structures with diverse morphologies and photoluminescence properties. Especially, the emission can be tuned from the visible region to the near-infrared region (420 nm to 820 nm) by modulating the self-assembly process. Moreover, no obvious cytotoxic effect is observed for these nanostructures, and their utilization for in vivo imaging and as phosphors for light-emitting diodes is demonstrated. The data reveal that the morphologies and optical properties of the aromatic cyclo-dipeptide self-assemblies can be tuned, making them potential candidates for supramolecular quantum confined materials providing biocompatible alternatives for broad biomedical and opto-electric applications

    Pollination unpredictability and ovule number in a South-Andean Proteaceae along a rainfall gradient

    No full text
    Pollen limitation occurs frequently in plant populations and, as result, many ovules are wasted. One possible adaptive explanation posits that ovule overproduction represents a 'bet-hedging' strategy against pollination inefficiency. This hypothesis is supported by comparative evidence showing that unpredictability in pollen receipt is positively associated with an increasing number of ovules per flower across species. Yet, this proposition has not been tested at the intraspecific level, where natural selection operates. Here, we evaluated the relationship between pollination unpredictability, considering both pollination quantity and quality, and number of ovules per flower, across 16 populations of the south-Andean generalist treelet Embothrium coccineum J.R.Forster and G.Forst from north-western Patagonia, which occurs along a west-east gradient of decreasing rainfall. Despite sizable variation in mean number of ovules per flower, we found no increase in ovule production with increasing pollination unpredictability across populations. Instead, we found that mean number of ovules per flower decreased with decreasing rainfall. Therefore, in this species, there was no support for the proposal that ovule overproduction represents a bet-hedging strategy against unpredictable pollen receipt. Rather, the number of ovules per flower seems to be conditioned primarily by resource availability.Fil: Chalcoff, Vanina Ruth. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Aizen, Marcelo Adrian. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentin

    Pollinator type and secondarily climate are related to nectar sugar composition across the angiosperms

    Get PDF
    Pollinators are important agents of selection on floral traits, including nectar sugar composition. Although it is widely assumed that the proportion of sugars (mainly sucrose, glucose and fructose) in nectar reflects pollinators’ physiological limitations and digestive efficiency, the relative impact of pollinators and abiotic factors on nectar sugar composition, as well as the generality of these associations across the angiosperms, remain unknown. We compiled data on nectar sugar composition for >1000 plant species, along with information on flower visitors, plant growth form and latitudinal climatic zone, to provide the first comprehensive assessment of correlates of variation in sugar nectar composition in the angiosperms. After assembling a phylogeny linking all species in the dataset, we estimated the amount of phylogenetic signal in the percentage of sucrose and, by applying phylogenetically-informed multiple regressions, we evaluated whether nectar composition was influenced either by the main pollinator group, plant growth form, or latitudinal climatic zone. The relative importance of each of these factors was then assessed through model selection based on Akaike information criteria and deviance partitioning analysis. Nectar was dominated by sucrose in 56.8% of all the species, glucose in 16.7%, and fructose in 5.5%. Nectar in the remaining species was characterized by similar proportions of the three sugars. Variation in the proportion of sucrose was highest (~70%) at the intrafamily level, and had a significant but low phylogenetic signal, which partially reflects phylogenetic conservatism of the pollinator niche. After controlling for phylogenetic effects, the proportion of sucrose was mainly related to pollinator type and secondarily to climate. Accordingly, this study indicates that nectar sugar composition shows high evolutionary lability and its variation reflects plant-pollinator associations.Fil: Chalcoff, Vanina Ruth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Gleiser, Gabriela Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Ezcurra, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Aizen, Marcelo Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentin

    Increasing pollen production at high latitudes across animal-pollinated flowering plants

    No full text
    Aim: Plant reliance on animal mutualists is expected to decrease with latitude owing to increasing environmental instability. As a consequence, more erratic animal pollination in the temperate zones than in the tropics could translate into lower efficiency in pollen transfer, and thus increasing pollen wastage. Despite the relevance of this hypothesis for plant reproductive evolution, the implications of a proposed latitudinal gradient in pollinator reliability for pollen and ovule production, traits directly affecting seed siring and seed set, respectively, remain unresolved. Location: Global. Time period: 1971–2020. Major taxa studied: Angiospermae. Methods: Based on a bibliographic survey and our own data, we collated a dataset with information on pollen production (P) and ovule number (O) per flower from 419 studies, including a total of 1,392 animal-pollinated angiosperm species from 141 families distributed worldwide and sampled between the equator and 68.35° latitude. Using phylogenetic general linear mixed models, we investigated latitudinal variation in P and O. We also tested a latitudinal effect on several ancillary plant traits associated with a plant’s mating system and pollinator specialization that might confound any latitudinal effect on gamete production. Results: P but not O was positively associated with latitude, a trend that even became stronger after including the latitudinally varying ancillary traits (i.e., growth form, flower size, flower symmetry and number of pollinator orders). The latitudinal effect on P was more pronounced among species producing large flowers, a trait that could be linked to self-incompatibility and thus outcrossing. A weak phylogenetic patterning of P also indicates high evolvability potential of this trait, which may have an effect on both male and female plant fitness. Main conclusions: Even though a latitudinal trend in pollinator reliability still awaits direct testing, the observed latitudinal increase in P across angiosperms can be interpreted as an evolutionary consequence of an increasingly unpredictable pollination environment.Fil: Leme Da Cunha, Nicolay. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Gleiser, Gabriela Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Sáez, Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Chalcoff, Vanina Ruth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Tur, Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Aizen, Marcelo Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina. Wissenschaftskolleg zu Berlin; Alemani

    Entropically-Driven Co-assembly of l-Histidine and l-Phenylalanine to Form Supramolecular Materials

    No full text
    Molecular self-and co-assembly allow the formation of diverse and well-defined supramolecular structures with notable physical properties. Among the associating molecules, amino acids are especially attractive due to their inherent biocompatibility and simplicity. The biologically active enantiomer of L-histidine (L-His) plays structural and functional roles in proteins but does not self-assemble to form discrete nanostructures. In order to expand the structural space to include L-His-containing materials, we explored the co-assembly of L-His with all aromatic amino acids, including phenylalanine (Phe), tyrosine (Tyr), and tryptophan (Trp), all in both enantiomeric forms. In contrast to pristine L-His, the combination of this building block with all aromatic amino acids resulted in distinct morphologies including fibers, rods, and flake-like structures. Electrospray ionization mass spectrometry (ESI-MS) indicated the formation of supramolecular co-assemblies in all six combinations, but time-of-flight secondary-ion mass spectrometry (ToF-SIMS) indicated the best seamless co-assembly occurs between L-His and L-Phe while in the other cases, different degrees of phase separation could be observed. Indeed, isothermal titration calorimetry (ITC) suggested the highest affinity between L-His and L-Phe where the formation of co-assembled structures was driven by entropy. In accordance, among all the combinations, the co-assembly of L-His and L-Phe produced single crystals. The structure revealed the formation of a 3D network with nanocavities stabilized by hydrogen bonding between-N (L-His) and-NH (L- Phe). Taken together, using the co-assembly approach we expanded the field of amino acid nanomaterials and showed the ability to obtain discrete supramolecular nanostructures containing L-His based on its specific interactions with L-Phe

    Graphene Oxide/Nucleic-Acid-Stabilized Silver Nanoclusters: Functional Hybrid Materials for Optical Aptamer Sensing and Multiplexed Analysis of Pathogenic DNAs

    No full text
    Hybrid systems consisting of nucleic-acid-functionalized silver nanoclusters (AgNCs) and graphene oxide (GO) are used for the development of fluorescent DNA sensors and aptasensors, and for the multiplexed analysis of a series of genes of infectious pathogens. Two types of nucleic-acid-stabilized AgNCs are used: one type includes the red-emitting AgNCs (616 nm) and the second type is near-infrared-emitting AgNCs (775 nm). Whereas the nucleic-acid-stabilized AgNCs do not bind to GO, the conjugation of single-stranded nucleic acid to the DNA-stabilized AgNCs leads to the adsorption of the hybrid nanostructures to GO and to the fluorescence quenching of the AgNCs. By the conjugation of oligonucleotide sequences acting as probes for target genes, or as aptamer sequences, to the nucleic-acid-protected AgNCs, the desorption of the probe/nucleic-acid-stabilized AgNCs from GO through the formation of duplex DNA structures or aptamer–substrate complexes leads to the generation of fluorescence as a readout signal for the sensing events. The hybrid nanostructures are implemented for the analysis of hepatitis B virus gene (HBV), the immunodeficiency virus gene (HIV), and the syphilis (<i>Treponema pallidum</i>) gene. Multiplexed analysis of the genes is demonstrated. The nucleic-acid-AgNCs-modified GO is also applied to detect ATP or thrombin through the release of the respective AgNCs-labeled aptamer–substrate complexes from GO

    Multiplexed Aptasensors and Amplified DNA Sensors Using Functionalized Graphene Oxide: Application for Logic Gate Operations

    No full text
    Graphene oxide (GO) is implemented as a functional matrix for developing fluorescent sensors for the amplified multiplexed detection of DNA, aptamer–substrate complexes, and for the integration of predesigned DNA constructs that activate logic gate operations. Fluorophore-labeled DNA strands acting as probes for two different DNA targets are adsorbed onto GO, leading to the quenching of the luminescence of the fluorophores. Desorption of the probes from the GO, through hybridization with the target DNAs, leads to the fluorescence of the respective label. By coupling exonuclease III, Exo III, to the system, the recycling of the target DNAs is demonstrated, and this leads to the amplified detection of the DNA targets (detection limit 5 × 10<sup>–12</sup> M). Similarly, adsorption of fluorophore-functionalized aptamers against thrombin or ATP onto the GO leads to the desorption of the aptamer–substrate complexes from GO and to the triggering of the luminescence corresponding to the respective fluorophore, thus, allowing the multiplexed analysis of the aptamer–substrate complexes. By designing functional fluorophore-labeled DNA constructs and their interaction with GO, in the presence (or absence) of nucleic acids, or two different substrates for aptamers, as inputs, the activation of the “OR” and “AND” logic gates is demonstrated

    Gossypol-Cross-Linked Boronic Acid-Modified Hydrogels: A Functional Matrix for the Controlled Release of an Anticancer Drug

    No full text
    Anticancer drug gossypol cross-links phenylboronic acid-modified acrylamide copolymer chains to form a hydrogel matrix. The hydrogel is dissociated in an acidic environment (pH 4.5), and its dissociation is enhanced in the presence of lactic acid (an α-hydroxy carboxylic acid) as compared to formic acid. The enhanced dissociation of the hydrogel by lactic acid is attributed to the effective separation of the boronate ester bridging groups through the formation of a stabilized complex between the boronic acid substituent and the lactic acid. Because lactic acid exists in cancer cells in elevated amounts and the cancer cells’ environment is acidic, the cross-linked hydrogel represents a stimuli-responsive matrix for the controlled release of gossypol. The functionality is demonstrated and characterized by rheology and other spectroscopic means

    Gossypol-Capped Mitoxantrone-Loaded Mesoporous SiO<sub>2</sub> NPs for the Cooperative Controlled Release of Two Anti-Cancer Drugs

    No full text
    Mesoporous SiO<sub>2</sub> nanoparticles, MP-SiO<sub>2</sub> NPs, are functionalized with the boronic acid ligand units. The pores of the MP-SiO<sub>2</sub> NPs are loaded with the anticancer drug mitoxantrone, and the pores are capped with the anticancer drug gossypol. The resulting two-drug-functionalized MP-SiO<sub>2</sub> NPs provide a potential stimuli-responsive anticancer drug carrier for cooperative chemotherapeutic treatment. In vitro experiments reveal that the MP-SiO<sub>2</sub> NPs are unlocked under environmental conditions present in cancer cells, e.g., acidic pH and lactic acid overexpressed in cancer cells. The effective unlocking of the capping units under these conditions is attributed to the acidic hydrolysis of the boronate ester capping units and to the cooperative separation of the boronate ester bridges by the lactate ligand. The gossypol-capped mitoxantrone-loaded MP-SiO<sub>2</sub> NPs reveals preferential cytotoxicity toward cancer cells and cooperative chemotherapeutic activities toward the cancer cells. The MCF-10A epithelial breast cells and the malignant MDA-MB-231 breast cancer cells treated with the gossypol-capped mitoxantrone-loaded MP-SiO<sub>2</sub> NPs revealed after a time-interval of 5 days a cell death of ca. 8% and 60%, respectively. Also, the gossypol-capped mitoxantrone-loaded MP-SiO<sub>2</sub> NPs revealed superior cancer-cell death (ca. 60%) as compared to control carriers consisting of β-cyclodextrin-capped mitoxantrone-loaded (ca. 40%) under similar loading of the mitoxantrone drug. The drugs-loaded MP-SiO<sub>2</sub> NPs reveal impressive long-term stabilities
    corecore