77 research outputs found

    Universal Deep Image Compression via Content-Adaptive Optimization with Adapters

    Full text link
    Deep image compression performs better than conventional codecs, such as JPEG, on natural images. However, deep image compression is learning-based and encounters a problem: the compression performance deteriorates significantly for out-of-domain images. In this study, we highlight this problem and address a novel task: universal deep image compression. This task aims to compress images belonging to arbitrary domains, such as natural images, line drawings, and comics. To address this problem, we propose a content-adaptive optimization framework; this framework uses a pre-trained compression model and adapts the model to a target image during compression. Adapters are inserted into the decoder of the model. For each input image, our framework optimizes the latent representation extracted by the encoder and the adapter parameters in terms of rate-distortion. The adapter parameters are additionally transmitted per image. For the experiments, a benchmark dataset containing uncompressed images of four domains (natural images, line drawings, comics, and vector arts) is constructed and the proposed universal deep compression is evaluated. Finally, the proposed model is compared with non-adaptive and existing adaptive compression models. The comparison reveals that the proposed model outperforms these. The code and dataset are publicly available at https://github.com/kktsubota/universal-dic.Comment: Accepted at the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 202

    Magnetotelluric and temperature monitoring after the 2011 sub-Plinian eruptions of Shinmoe-dake volcano

    Get PDF
    Three sub-Plinian eruptions took place on 26–27 January 2011 at Shinmoe-dake volcano in the Kirishima volcanic group, Japan. During this event, GPS and tiltmeters detected syn-eruptive ground subsidence approximately 7 km to the WNW of the volcano. Starting in March 2011, we conducted broad-band magnetotelluric (MT) measurements at a site located 5 km NNW of the volcano, beneath which the Shinmoe-dake magma plumbing system may exist. In addition, temperature monitoring of fumaroles and hot-springs near the MT site was initiated in July 2011. Our MT data record changes in apparent resistivity of approximately ±5%, along with a ±1◦ phase change in the off-diagonal component of the impedance tensor (Zxy and Zyx ). Using 1-D inversion, we infer that these slight changes in resistivity took place at relatively shallow depths of only a few hundred meters, at the transition between a near-surface resistive layer and an underlying conductive layer. Resistivity changes observed since March 2012 are correlated with the observed temperature increases around the MT monitoring site. These observations suggest the existence beneath the MT site of pathways which enable volatile escape

    Seismicity controlled by resistivity structure : the 2016 Kumamoto earthquakes, Kyushu Island, Japan

    Get PDF
    The M JMA 7.3 Kumamoto earthquake that occurred at 1:25 JST on April 16, 2016, not only triggered aftershocks in the vicinity of the epicenter, but also triggered earthquakes that were 50–100 km away from the epicenter of the main shock. The active seismicity can be divided into three regions: (1) the vicinity of the main faults, (2) the northern region of Aso volcano (50 km northeast of the mainshock epicenter), and (3) the regions around three volcanoes, Yufu, Tsurumi, and Garan (100 km northeast of the mainshock epicenter). Notably, the zones between these regions are distinctively seismically inactive. The electric resistivity structure estimated from one-dimensional analysis of the 247 broadband (0.005–3000 s) magnetotelluric and telluric observation sites clearly shows that the earthquakes occurred in resistive regions adjacent to conductive zones or resistive-conductive transition zones. In contrast, seismicity is quite low in electrically conductive zones, which are interpreted as regions of connected fluids. We suggest that the series of the earthquakes was induced by a local accumulated stress and/or fluid supply from conductive zones. Because the relationship between the earthquakes and the resistivity structure is consistent with previous studies, seismic hazard assessment generally can be improved by taking into account the resistivity structure. Following on from the 2016 Kumamoto earthquake series, we suggest that there are two zones that have a relatively high potential of earthquake generation along the western extension of the MTL

    シゼン デンイ ト MTホウ カラ モトメタ フジサン チカ ノ コウゾウ ト ソレ ガ サンタイカ ノ リュウタイ ニ タイシテ モツ イミ

    No full text
    京都大学0048新制・課程博士博士(理学)甲第10615号理博第2757号新制||理||1400(附属図書館)UT51-2004-G462京都大学大学院理学研究科地球惑星科学専攻(主査)教授 大志万 直人, 教授 田中 良和, 教授 竹本 修三学位規則第4条第1項該当Doctor of ScienceKyoto UniversityDA

    Estimation of vent radii from video recordings and infrasound data analysis: Implications for Vulcanian eruptions from Sakurajima volcano, Japan

    Get PDF
    We estimated the vent radius within Showa Crater of Sakurajima volcano from ejection velocity and flow rate of gas‐particle mixtures. The ejection velocity was calculated from video recordings, and the flow rate and volume from infrasound data. Based on the assumption that the vent shape does not change during an explosion, the vent radius was estimated from 201 impulsive Vulcanian eruptions at Showa Crater, yielding values of 6.4–42.3 m (median 23.8 m), which is comparable with the width of fresh lava capping the vent, as photographed from a helicopter. Long‐term changes in vent radius (i.e., over several months) show a relationship with magma accumulation within a reservoir 2–5 km beneath the crater. If the top of the conduit is assumed to be cylindrical, then the vertical extent of the gas‐rich zone is estimated to be 120 m, which may reflect the depth of gas accumulation and buildup of significant overpressure

    Three-dimensional resistivity structure of Asama Volcano revealed by data-space magnetotelluric inversion using unstructured tetrahedral elements

    Get PDF
    Asama Volcano is an andesitic composite volcano and one of the most active volcanoes in Japan. In order to reveal electrical resistivity structure beneath the volcano accurately, we performed a 3-D inversion of dense magnetotelluric survey data. In order to prevent misinterpretation of the subsurface resistivity due to the steep topography around Asama Volcano, we used an unstructured tetrahedral mesh to represent the topography. Furthermore, we reduced the calculation time by transforming the inverse problem from the model space into the data space. Comparison of the new data-space method to the original model-space method showed that the calculation time required to update the model parameterswas reduced as a result of the transformation, whereas the resistivity structure obtained remained unchanged. In the subsurface resistivity structure around Asama Volcano that was estimated from the inversion, resistive bodies were discovered to be located under the old eruption centres. In particular, under the 24 ka collapse caldera to the west of the presently active crater, a spherical resistive body was found to exist in isolation. In addition, there was a widespread conductive layer below the resistive surface layer. By comparison with previous hydrological and geochemical studies, the conductive layer was interpreted as being a high-water-content layer and an overlying layer rich in altered clay minerals. Because the western part of the volcanic conduit was considered to be the resistive area, which is inferred to consist of unfractured rocks with lower permeability than their surroundings, it would appear that the area obstructs the westward flow of the hydrothermal fluid beneath the summit, thereby contributing to higher concentrations of SO4 2− and Cl− in the spring water at the northern and eastern feet as well as the uneven location of a diffuse CO2 anomaly

    Combustion characteristics of Mg vapor jet flames in CO2 atmospheres

    Get PDF
    An experimental study was performed on the combustion characteristics of a jet diffusion flame of Mg vapor injected through a small nozzle into CO2 atmospheres at low pressures from 8 to 48 kPa with a view to using Mg as fuel for a CO2-breathing turbojet engine in the Mars atmosphere. The Mg vapor jet produced three types of the flame. At lower pressures and higher injection velocities, a red-heated jet flame formed, in which the injected Mg vapor was heated by spontaneous reactions, turning red. At medium pressures and injection velocities, a stable luminous lifted-like flame developed above the rim of the chimney, a tube-like combustion product for the Mg vapor passage that grew on the nozzle during combustion. The flame had similar flame length properties to laminar jet diffusion flames of gaseous fuels. At higher pressures and lower injection velocities, a stable luminous attached flame developed at the rim of the chimney. The same reactions, producing MgO(g), CO and MgO(c), proceeded preferentially for all flames and chimneys. Carbon was only subordinately generated. Burning behavior of Mg vapor jets in a CO2 atmosphere has been represented, including the homogeneous reaction of Mg vapor with CO2, the diffusion of CO2, and the condensation and deposit of MgO. The injection velocity of Mg vapor at the rim of the chimney and the exothermic reactions with diffused CO2 that occur there play a crucial role in the attachment and development of the flames. The flame structure may be explained in terms of the relatively low gas-phase reaction rate of Mg with CO2
    corecore