133 research outputs found

    4,4′-Bipyridine–dimethyl­glyoxime (1/1)

    Get PDF
    In the title compound, C10H8N2·C4H8N2O2, both the dimethyl­glyoxime and the 4,4′-bipyridine mol­ecules have crystallographic C i symmetry. The mol­ecules stack along the a-axis direction with a dihedral angle of 20.4 (8)° between their planes. In the crystal, the components are linked by O—H⋯N hydrogen bonds into alternating chains along [120] and [10]

    Machine-learning-based quantitative estimation of soil organic carbon content by VIS/NIR spectroscopy

    Get PDF
    Soil organic carbon (SOC) is an important soil property that has profound impact on soil quality and plant growth. With 140 soil samples collected from Ebinur Lake Wetland National Nature Reserve, Xinjiang Uyghur Autonomous Region of China, this research evaluated the feasibility of visible/near infrared (VIS/NIR) spectroscopy data (350–2,500 nm) and simulated EO-1 Hyperion data to estimate SOC in arid wetland regions. Three machine learning algorithms including Ant Colony Optimization-interval Partial Least Squares (ACO-iPLS), Recursive Feature Elimination-Support Vector Machine (RF-SVM), and Random Forest (RF) were employed to select spectral features and further estimate SOC. Results indicated that the feature wavelengths pertaining to SOC were mainly within the ranges of 745–910 nm and 1,911–2,254 nm. The combination of RF-SVM and first derivative pre-processing produced the highest estimation accuracy with the optimal values of Rt (correlation coefficient of testing set), RMSEt and RPD of 0.91, 0.27% and 2.41, respectively. The simulated EO-1 Hyperion data combined with Support Vector Machine (SVM) based recursive feature elimination algorithm produced the most accurate estimate of SOC content. For the testing set, Rt was 0.79, RMSEt was 0.19%, and RPD was 1.61. This practice provides an efficient, low-cost approach with potentially high accuracy to estimate SOC contents and hence supports better management and protection strategies for desert wetland ecosystems

    Belgium

    Full text link
    peer reviewe

    Effect of nano-C doping on the in-situ processed MgB2 tapes

    Full text link
    The effect of nano-C doping on the microstructure and superconducting properties of Fe-sheathed MgB2 tapes prepared through the in-situ powder-in-tube method was studied. Heat treatment was performed at a low temperature of 650C for 1 h. Scanning electron microscopy investigation revealed that the smaller grain size of MgB2 in the samples with the C-doping. Further, the a-axis lattice parameter and transition temperature decreased monotonically with increasing doping level, which is due to the C substitution for B. High critical current density Jc values in magnetic fields were achieved in the doped samples because of the very fine-grained microstructure of the superconducting phase obtained with C doping.Comment: revised manuscript, 4 pages, 4 figures. to be published soo

    Ambient particulate air pollution induces oxidative stress and alterations of mitochondria and gene expression in brown and white adipose tissues

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prior studies have demonstrated a link between air pollution and metabolic diseases such as type II diabetes. Changes in adipose tissue and its mitochondrial content/function are closely associated with the development of insulin resistance and attendant metabolic complications. We investigated changes in adipose tissue structure and function in brown and white adipose depots in response to chronic ambient air pollutant exposure in a rodent model.</p> <p>Methods</p> <p>Male ApoE knockout (ApoE<sup>-/-</sup>) mice inhaled concentrated fine ambient PM (PM < 2.5 μm in aerodynamic diameter; PM<sub>2.5</sub>) or filtered air (FA) for 6 hours/day, 5 days/week, for 2 months. We examined superoxide production by dihydroethidium staining; inflammatory responses by immunohistochemistry; and changes in white and brown adipocyte-specific gene profiles by real-time PCR and mitochondria by transmission electron microscopy in response to PM<sub>2.5 </sub>exposure in different adipose depots of ApoE<sup>-/- </sup>mice to understand responses to chronic inhalational stimuli.</p> <p>Results</p> <p>Exposure to PM<sub>2.5 </sub>induced an increase in the production of reactive oxygen species (ROS) in brown adipose depots. Additionally, exposure to PM<sub>2.5 </sub>decreased expression of uncoupling protein 1 in brown adipose tissue as measured by immunohistochemistry and Western blot. Mitochondrial number was significantly reduced in white (WAT) and brown adipose tissues (BAT), while mitochondrial size was also reduced in BAT. In BAT, PM<sub>2.5 </sub>exposure down-regulated brown adipocyte-specific genes, while white adipocyte-specific genes were differentially up-regulated.</p> <p>Conclusions</p> <p>PM<sub>2.5 </sub>exposure triggers oxidative stress in BAT, and results in key alterations in mitochondrial gene expression and mitochondrial alterations that are pronounced in BAT. We postulate that exposure to PM<sub>2.5 </sub>may induce imbalance between white and brown adipose tissue functionality and thereby predispose to metabolic dysfunction.</p

    Research on the biological mechanism and potential application of CEMIP

    Get PDF
    Cell migration–inducing protein (CEMIP), also known as KIAA1199 and hyaluronan-binding protein involved in hyaluronan depolymerization, is a new member of the hyaluronidase family that degrades hyaluronic acid (HA) and remodels the extracellular matrix. In recent years, some studies have reported that CEMIP can promote the proliferation, invasion, and adhesion of various tumor cells and can play an important role in bacterial infection and arthritis. This review focuses on the pathological mechanism of CEMIP in a variety of diseases and expounds the function of CEMIP from the aspects of inhibiting cell apoptosis, promoting HA degradation, inducing inflammatory responses and related phosphorylation, adjusting cellular microenvironment, and regulating tissue fibrosis. The diagnosis and treatment strategies targeting CEMIP are also summarized. The various functions of CEMIP show its great potential application value

    Clinical presentation of hemophagocytic lymphohistiocytosis in adults is less typical than in children

    Get PDF
    OBJECTIVE: Hemophagocytic lymphohistiocytosis in adults is largely underdiagnosed. To improve the rate and accuracy of diagnosis in adults, the clinical and laboratory characteristics of hemophagocytic lymphohistiocytosis were analyzed in and compared between adults and children in a Chinese cohort. METHOD: Data from 50 hemophagocytic lymphohistiocytosis patients, including 34 adults and 16 children who fulfilled the 2004 hemophagocytic lymphohistiocytosis diagnostic criteria, were collected and analyzed. RESULTS: 1. Etiological factors: The proportion of Epstein-Barr virus infection was lower in adults compared with children, whereas fungal infection and natural killer/T cell lymphoma were more frequent in adults (

    The water lily genome and the early evolution of flowering plants

    Get PDF
    Water lilies belong to the angiosperm order Nymphaeales. Amborellales, Nymphaeales and Austrobaileyales together form the so-called ANA-grade of angiosperms, which are extant representatives of lineages that diverged the earliest from the lineage leading to the extant mesangiosperms1–3. Here we report the 409-megabase genome sequence of the blue-petal water lily (Nymphaea colorata). Our phylogenomic analyses support Amborellales and Nymphaeales as successive sister lineages to all other extant angiosperms. The N. colorata genome and 19 other water lily transcriptomes reveal a Nymphaealean whole-genome duplication event, which is shared by Nymphaeaceae and possibly Cabombaceae. Among the genes retained from this whole-genome duplication are homologues of genes that regulate flowering transition and flower development. The broad expression of homologues of floral ABCE genes in N. colorata might support a similarly broadly active ancestral ABCE model of floral organ determination in early angiosperms. Water lilies have evolved attractive floral scents and colours, which are features shared with mesangiosperms, and we identified their putative biosynthetic genes in N. colorata. The chemical compounds and biosynthetic genes behind floral scents suggest that they have evolved in parallel to those in mesangiosperms. Because of its unique phylogenetic position, the N. colorata genome sheds light on the early evolution of angiosperms.Supplementary Tables: This file contains Supplementary Tables 1-21.National Natural Science Foundation of China, the open funds of the State Key Laboratory of Crop Genetics and Germplasm Enhancement (ZW201909) and State Key Laboratory of Tree Genetics and Breeding, the Fujian provincial government in China, the European Union Seventh Framework Programme (FP7/2007-2013) under European Research Council Advanced Grant Agreement and the Special Research Fund of Ghent University.http://www.nature.com/naturecommunicationsam2021BiochemistryGeneticsMicrobiology and Plant Patholog

    Radiometric Cross-Calibration of GF-4 in Multispectral Bands

    No full text
    The GaoFen-4 (GF-4), launched at the end of December 2015, is China’s first high-resolution geostationary optical satellite. A panchromatic and multispectral sensor (PMS) is onboard the GF-4 satellite. Unfortunately, the GF-4 has no onboard calibration assembly, so on-orbit radiometric calibration is required. Like the charge-coupled device (CCD) onboard HuanJing-1 (HJ) or the wide field of view sensor (WFV) onboard GaoFen-1 (GF-1), GF-4 also has a wide field of view, which provides challenges for cross-calibration with narrow field of view sensors, like the Landsat series. A new technique has been developed and used to calibrate HJ-1/CCD and GF-1/WFV, which is verified viable. The technique has three key steps: (1) calculate the surface using the bi-directional reflectance distribution function (BRDF) characterization of a site, taking advantage of its uniform surface material and natural topographic variation using Landsat Enhanced Thematic Mapper Plus (ETM+)/Operational Land Imager (OLI) imagery and digital elevation model (DEM) products; (2) calculate the radiance at the top-of-the atmosphere (TOA) with the simulated surface reflectance using the atmosphere radiant transfer model; and (3) fit the calibration coefficients with the TOA radiance and corresponding Digital Number (DN) values of the image. This study attempts to demonstrate the technique is also feasible to calibrate GF-4 multispectral bands. After fitting the calibration coefficients using the technique, extensive validation is conducted by cross-validation using the image pairs of GF-4/PMS and Landsat-8/OLI with similar transit times and close view zenith. The validation result indicates a higher accuracy and frequency than that given by the China Centre for Resources Satellite Data and Application (CRESDA) using vicarious calibration. The study shows that the new technique is also quite feasible for GF-4 multispectral bands as a routine long-term procedure

    Evaluation on Radiometric Capability of Chinese Optical Satellite Sensors

    No full text
    The radiometric capability of on-orbit sensors should be updated on time due to changes induced by space environmental factors and instrument aging. Some sensors, such as Moderate Resolution Imaging Spectroradiometer (MODIS), have onboard calibrators, which enable real-time calibration. However, most Chinese remote sensing satellite sensors lack onboard calibrators. Their radiometric calibrations have been updated once a year based on a vicarious calibration procedure, which has affected the applications of the data. Therefore, a full evaluation of the sensors’ radiometric capabilities is essential before quantitative applications can be made. In this study, a comprehensive procedure for evaluating the radiometric capability of several Chinese optical satellite sensors is proposed. In this procedure, long-term radiometric stability and radiometric accuracy are the two major indicators for radiometric evaluation. The radiometric temporal stability is analyzed by the tendency of long-term top-of-atmosphere (TOA) reflectance variation; the radiometric accuracy is determined by comparison with the TOA reflectance from MODIS after spectrally matching. Three Chinese sensors including the Charge-Coupled Device (CCD) camera onboard Huan Jing 1 satellite (HJ-1), as well as the Visible and Infrared Radiometer (VIRR) and Medium-Resolution Spectral Imager (MERSI) onboard the Feng Yun 3 satellite (FY-3) are evaluated in reflective bands based on this procedure. The results are reasonable, and thus can provide reliable reference for the sensors’ application, and as such will promote the development of Chinese satellite data
    corecore