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ABSTRACT

Soil organic carbon (SOC) is an important soil property that has profound impact on
soil quality and plant growth. With 140 soil samples collected from Ebinur Lake Wetland
National Nature Reserve, Xinjiang Uyghur Autonomous Region of China, this research
evaluated the feasibility of visible/near infrared (VIS/NIR) spectroscopy data (350—
2,500 nm) and simulated EO-1 Hyperion data to estimate SOC in arid wetland regions.
Three machine learning algorithms including Ant Colony Optimization-interval Partial
Least Squares (ACO-iPLS), Recursive Feature Elimination-Support Vector Machine
(RF-SVM), and Random Forest (RF) were employed to select spectral features and
further estimate SOC. Results indicated that the feature wavelengths pertaining to SOC
were mainly within the ranges of 745-910 nm and 1,911-2,254 nm. The combination of
RF-SVM and first derivative pre-processing produced the highest estimation accuracy
with the optimal values of R, (correlation coefficient of testing set), RMSE, and RPD
of 0.91, 0.27% and 2.41, respectively. The simulated EO-1 Hyperion data combined
with Support Vector Machine (SVM) based recursive feature elimination algorithm
produced the most accurate estimate of SOC content. For the testing set, R, was 0.79,
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et al., 2005). Due to its high carbon storage, any slight change in wetland carbon stocks
might result in significant effect on global climate change (Wang, Zhang & Haimiti, 2015).
For example, changes in wetland carbon stocks can increase carbon dioxide concentration
and methane in the atmosphere, which might lead to more severe global warming (Pott ¢
Pott, 2004).

Wetlands in arid and semi-arid regions play an important role as ecological barrier
in desert ecosystems. Unlike wetlands in wet regions, arid wetlands are highly sensitive
to human activities, and the restoration and rehabilitation of them often are extremely
hard once degraded (Zhao et al., 2009). Therefore, inland wetlands in arid regions are
small but important component that cannot be ignored, especially in global carbon cycle
and balance of atmospheric greenhouse gases (GHG) studies (Cole et al., 2007; Liu ef al.,
2010). Over the past decades, environmental variables (e.g., mean annual precipitation
and temperature), soil characteristics including texture and lithology, and the increasingly
intensive human activities, like water diversion, reclamation, overgrazing, pollutant
emissions have profoundly changed the arid region’s wetland distribution and therefore
the balance of carbon budget (Ding & Yu, 20145 Thakur et al., 2012). It is imperative to
develop efficient, fast, and relatively accurate approaches to detect, monitor and predict
soil organic carbon (SOC) content over large areas in arid regions (Jaber ¢» Al-Qinna, 2011;
Stevens et al., 2010; Vohland et al., 2011).

Traditional approaches measuring SOC content employ typical soil chemical analysis
methods, mainly including dry combustion techniques (Craft, Seneca ¢ Broome, 1991),
chemical oxidation method (West ¢ Post, 2002) and acid solution extraction (Polglase,
Jokela & Comerford, 1992). Though those traditional approaches are relatively accurate
and widely accepted, they require extensive lab work and often destroy the samples during
processing, which renders repeating the lab work nearly impossible. On the other hand,
recent studies have reported that the Visible/Near Infrared (VIS/NIR) spectroscopy is a
rapid, cost-effective, quantitative and non-destructive technique which provides spectral
information with large amount of data to monitor and detect soil quality and chemical
components (Kinoshita et al., 2012). Due to the large amount of spectral information,
scholars have attempted to establish a wide range of empirical models to seek in-depth
understanding between various soil chemicals (such as organic phosphorous, organic
carbon, among many others) and the reflective spectra obtained from the spectroscopy
analysis (Viscarra Rossel et al., 2006). Among them, machine learning algorithms with their
capability to relatively quickly and accurately analyze large amount of data, stand out to
provide excellent opportunities for taking advantage of the spectral information (Kuang,
Tekin ¢ Mouazen, 2015; Nawar ¢ Mouazen, 2017). The analysis can be done both within
the laboratory and in the field.

SOC was one of most important controlling components of soil spectral features.
With SOC content of 2% as a boundary, that is, when SOM content exceeded 2%, the
SOC played a principal role in masking out the spectral features, while the SOC content
was less than 2%, it became less effective (Wang et al., 2017). Many studies have used
VIS/NIR spectroscopy to study, estimate and monitor SOC content, but mainly on Alfisols,
Entisols, Ultisols (Chang et al., 2001; Summers et al., 2011; Vasques, Grunwald & Harris,
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2010), and Mollisols (Aratijo et al., 2015; Hong et al., 2018). In general, the conventional
regression methods were sufficient for the spectral detection of soil types with higher SOC
content. The composition, structure and sedimentary environment of wetland soils were
extreme complex, especially in arid regions (Kayranli et al., 2010). Therefore, very few were
conducted on wetland soils in arid regions. In addition, most of the empirical approaches
focus primarily on applying multivariate linear regression, partial least square regression, or
regression kriging to establish relationships between spectra and SOC (Dai et al., 2014; Guo
et al., 2015; Liu, Zhang & Zhang, 2008; St. Luce et al., 2014). These approaches often suffer
from autocorrelation, nonlinearity, or in some cases overestimation (Warng et al., 2017).
On the other hand, machine learning approaches in recent years have gained momentum
due to their relative flexibility in adapting (learning) the data structure prior to making any
sensible prediction or simulation (McDowell et al., 2012; Peng et al., 2014; Viscarra Rossel
¢ Behrens, 2010; Were et al., 2015).

Applications of various machine learning approaches, such as Support Vector Machine
(SVM) and random forest (RF), have been attempted (Meng ¢ Dennison, 2015; Nauman,
Thompson & Rasmussen, 20145 Shi et al., 2013). SVM is a powerful calibration method based
on the kernel learning methods, it could offer a possibility to train generalizable, nonlinear
classifiers in high dimensional spaces using a small training set is that it offers a possibility
to train generalizable, nonlinear classifiers in high dimensional spaces using a small
training set (Mountrakis, Im & Ogole, 2011; Vapnik, 1999). Differing from existing linear
and non-linear regression modeling methods, RF has acceptable predicting performance
even if most independent variables are noise (Svetnik et al., 2003; Wang et al., 2018). For
instance, Viscarra Rossel & Behrens (2010) and Were et al. (2015) collected soil samples
from Kenya and Australia, and applied NIR spectroscopic analyses on the samples. Their
study found that both support vector machine and random forest provide reasonably good
estimation for SOC. Peng et al. (2014) also applied VIS/NIR spectroscopy with SVM to
estimate SOC contents with samples from the middle and lower reaches of the Yangtze
River, China. All these researches reported promising results in combining both machine
learning approaches and VIS/NIR spectroscopic analysis. Studies on SOC measurement in
arid wetlands predominantly employed traditional chemical analytical approaches (Anne
et al., 2014; Cohen, Prenger & DeBusk, 2005; Wang et al., 2016; Wang, Zhang ¢ Haimiti,
2015) and the use of machine learning algorithms with spectroscopy are limited.

At present, more machine learning algorithms have been proposed and used for variable
selection, e.g., interval partial least squares (iPLS), ant colony optimization (ACO).
The general success of combining VIS/NIR spectroscopy analysis and machine learning
approaches in other regions calls for in-depth investigation on applying similar approaches
in wetlands of arid regions. The combination of two algorithms could maximize the
superiority of single method and overcome some faults, to a certain extent. In terms of the
Ant Colony Optimization-interval Partial Least Squares regression (ACO-iPLS), it could
exhibit certain advantage in distributed parallel calculation, information positive feedback
and heuristic search ability (Huang et al., 20145 Zhu et al., 2018). The Support Vector
Machine Recursive Feature Elimination (RF-SVM), an intelligent optimization method
has demonstrated its outstanding performance and great potential for development in

Ding et al. (2018), PeerJ, DOI 10.7717/peerj.5714 3/24


https://peerj.com
http://dx.doi.org/10.7717/peerj.5714

Peer

solving many complex optimization problems (Lin et al., 2011). EO-1 Hyperion data with
242 spectral bands was the first satellite borne hyperspectral imaging spectrometer, which
has been widely used in soil science, agricultural science, geological mapping, and accurate
mapping (Liu et al., 2009). Due to the limitation of atmospheric influence and sensor
observation conditions, it was difficult to obtain enough hyperspectral remote sensing
imageries to meet the needs of different research fields. Nevertheless, the simulation of
Hyperion data based on its spectral response function could serve as the effective substitute
for research, when there were no available data. Hence, it is worthwhile to consider these
coupling algorithms (RF-SVM and ACO-iPLS) and simulated remote sensed imageries as
tools to develop estimating models in soil science.

Given these backgrounds and motivated by previous research, this study aims to combine
VIS/NIR spectroscopy and machine learning approaches to quantitatively estimate SOC
content of wetlands in arid regions. The study area, Ebinur Lake Wetland National Nature
Reserve, located in the arid Northwestern China. The arid wetland ecosystem is very fragile
due to the specific climatic conditions. Regional SOC is more sensitive to the climatic
changes and human activities than in other areas. In addition, since the study area is
located along the Silk Road Economic Belt, its ecological stability has profound significance
on the sustainability of local economies as well as the entire Economic Belt (Tan et al.,
2018; Wang et al., 2018; Xu et al., 2017). We collected 140 soil samples at various depth in
2012 and analyzed the samples with chemical analysis. In the meantime, we also obtained
the spectra information through VIS/NIR spectroscopy. We choose three efficient machine
learning approaches, namely, the ACO-iPLS, RF-SVM, REF, to extract feature wavelengths
from the spectral data and simulated EO-1 Hyperion data, and further construct the
adequately stable and reliable models for the SOC content in the arid wetland regions.

MATERIAL AND METHODS
Study area

Ebinur Lake wetland is a typical arid region lake wetland in Xinjiang Uyghur Autonomous
Region, China (44°30'~45°09'N, 82°36’'~83°50'E). The study area is a combination of
lake, river and swamp wetlands, which is ideal for studying SOC contents in arid region
(Li, Zhao & Li, 2018). The wetland is located in the northern slopes of the Tianshan
Mountains, southwest of the Junggar Basin. The area is surrounded by mountains in
the south, west and north, but connect to the Mutetaer desert in the east (Fig. 1). Itis a
designated eco-protection region, with a land area of 2670.85 km?. The climate is typical
temperate arid continental climate with limited annual precipitation (90.9 mm), but very
high evaporation (3,400 mm). The annual average temperature is 8.3 °C (Abuduwailil,
Zhaoyong & Fengqing, 2015). According to the World Reference Base for Soil Resources
(WRB), local prevalent soil types are mainly Arenosols, Solonetz, and Solonchaks (He et
al., 2015; Wang et al., 2018). The existence of various typical arid region soil types provides
a good opportunity to test the proposed machine learning algorithms’ effectiveness to
monitor and evaluate SOC content.
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Figure 1 Study area and locations of sampling points. Vectorization by Jingzhe Wang.
Full-size Gal DOI: 10.7717/peerj.5714/fig-1

Soil collection and chemical analysis

The soil samples were collected from a field trip to the Ebinur Lake Wetland National
Nature Reserve in October 2012. The sampling sites were previously established for various
soil properties monitoring purposes. They are located around relatively accessible locations
in Kekebasitao Management Station, Yaziwan Management Station, Beidi Management
Station, Bird Island, Bortala River Lake estuary, and the lower reaches of Kuitun River.
There were in total 35 sampling sites (Fig. 1). At each sampling site, samples were collected
at four vertical depths (5 cm, 20 cm, 40 cm, and 60 cm) and five evenly distributed points
with a grid of 30 x 30 m (because the spatial resolution of Hyperion imagery is 30 m).
The samples for the five points (at each depth) were then mixed evenly to represent the
soil for that sampling site (at the specific depth). A total of (4 x 35) samples were collected
and then brought to the laboratory for chemical measurements. All soil samples (n = 140)
were sufficiently air-dried, ground and sieved through a two mm mesh to remove plant
materials, residues, roots and stones. The potassium dichromate method was employed for
the measurement of SOC content.

Spectral measurements and pre-processing

The reflectance spectra of all soil samples were measured in the laboratory via an
ASD FieldSpec®3 portable spectroradiometer (Analytical Spectral Devices, Inc., St,
Boulder, CO, USA) with a wavelength range of 350-2,500 nm. The spectral readings were
interpolated to a 1 nm interval. Using recommendation by Zhou et al. (2005), the spectra
of all soil samples were measured in a dark room with a 50-W halogen lamp as the light
source, which was positioned 0.5 m away from the soil sample, with a 25° zenith angle. The
soil samples were put in a 12 cm diameter with 1.8 cm depth container evenly. The optical
probe was installed about 0.1 m above the soil sample (Shi ef al., 2014). Prior to the first
scan, a standardized white Spectralon® panel with 99% reflectance was used to convert
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radiance to reflectance. To eliminate random reflectance errors, 10 spectral measurements
for each sample were taken and the average of these measurements was used as the final
spectral reflectance.

High frequency random noises, baseline drifts, and scattering noises could affect spectral
measurements. To remove the influence of these noises, Savitaky-Golay (SG) smoothing
was implemented with a window size of 5 and polynomial order of 2 via Origin Pro
software version 9.0. In general, the transformation of first order derivative was used for
the enhancement of the spectral characteristics (Savitzky ¢ Golay, 1964). In this study,
the SG preprocessed spectral data was transformed into first order derivative (A’), the
inversion of the first order derivative (1/A’), and logarithm transformation of the first
order derivative (Ig(A’)). In spectral analysis, they are effective pretreatments, which could
eliminate the background noise to a certain extent, and enhance the spectral characteristics
(Wang et al., 2017).

Model calibration, evaluation, and comparison

Considering the Euclidean distance of each sample, all 140 soil samples were separated into
two equal parts (training set and testing set) using the Kennard-Stone (K-S) algorithm.
Each set consists of 70 samples. To investigate the feasibility of using VIS/NIR to predict
SOC content and select the most effective pre-processing methods, three machine learning
approaches, i.e., Ant Colony Optimization-interval Partial Least Square (ACO-iPLS),
Recursive Feature Elimination based on Support Vector Machine (RF-SVM), and Random
Forest (RF), were applied for the reduction of inefficacious information and model
construction.

ACO-iPLS
ACO-iPLS approach is a combination between principal component analysis based PLS
and the meta heuristic optimization Ant Colony (ACO). PLS has been proven a robust
and reliable approach in spectral quantitative research, primarily because of its advantages
regarding dimension reduction and the synthesis and solving of multi-collinearity problems
among independent variables. ACO, on the other hand, is an optimization algorithm that
originates from the observation of the ants’ food-seeking behavior in which each ant will
leave certain amount of pheromone on the route to the food. A colony of ants would leave
enough amount of pheromone to guide the colony to follow the optimal route (with the
largest amount of pheromone) to the food. A combination of ACO and PLS algorithms
seems to produce fairly useful information to select the most informative spectra or
segments of spectra (Huang et al., 2014). Detailed steps are as follows:

(1) Initialization: set the size of the colony (k), for the m segments of spectra, the initial
pheromones 7; are all set to be 1.

=1, i=1.2,...,m. (1)

(2) Determine the probability that one segment will be selected in the “route”. The
selection is done with the Roulette wheel method, namely, suppose that the time t, segment
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’s pheromone is 7;(t), then the probability that segment i will be selected is:

()
sz=1 5i(t)’

(3) Target function: the prediction accuracy of a PLS model will be used as the target

Pi(t) = =1,2,...,m. (2)

function, specifically, the inversion of the root mean squared error (RMSE) is used here:

Q

1+ v %Z?:l()/i—j’\i)

where 7 is the number of samples, y; is the actual value (SOC content in this study), and

F=Q/(1+RMSE) = (3)

ﬁ- is the predicted value, Q is a constant that represents the significant factor (significance
level). Smaller RMSE indicates a better model.

(4) Update: assume p € (0, 1) is the information decaying rate (which can be selected
based on empirical studies), then the pheromone of segment i will update as:

Ti(t+1)=(1—p) x7(t)+p xF. (4)

Following these simple steps, we will iterate steps 2—4. Once the iteration reaches certain
amount, the algorithm will produce an optimal set of segments that contains the largest
amount of pheromone (information), which also produces the least overall RMSE values.

The SOC contents were regarded as y;. The soil spectra were divided in segments as the
different number of routes. The initial number of ants was set to 50, maximum recursive
attempts for the PLS to be 50, and maximum iteration to be 20. Based on the minimum
RMSE, p was set to 0.53, and Q to be 0.01. The threshold of segment was set to 0.3. For the
PLS model, the initial number of segments of spectra was set to 15.

RF-SVM

SVM is a machine learning algorithm that has recently attracted quite some attention in
dealing with large amount of data. The basic principle of SVM is to use a kernel function
that can maximally separate the different classes (Gonzdlez Costa et al., 2017; Thissen et al.,
2004). By using non-linear kernels, SVM can essentially map the seemingly inseparable
data points to higher dimension, to find the inherent structure of the data. Detailed steps
follow:

(1) Set the training samples Xy = [x1,%2,%3...X;, ... ,x,]7, and the corresponding class
labels: Y =[y1,2,¥3,-.- Vi, - ..,yn]T. Each x; (i=1,...,n) is a vector containing the spectral
information obtained from the VIS/NIR spectroscopic analysis. Each y; is a measured SOC
from chemical analysis.

(2) Initialize the feature subset vector s=[1,2,3,..., k]. The initial k is the total number
of wavelengths (k = 2,151, from 350 nm to 2,500 nm).

(3) Start the iteration: obtain a new training sample based on the remaining features: X
= Xy (3, 5). The initial training sample includes all 2,151 wavelengths (features).

(4) Use the training sample in SVM and obtain the weight vector (w) for all the features.

(5) Set the ordering rule: c = w? (to consider only the magnitude of the weights instead
of their signs).
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(6) Eliminate the feature that has the lowest ordering score C, and then update the
training sample.

(7) Repeat steps (3)—(6) until the set s is an empty set to obtain the final result with each
feature (wavelength) being ordered.

During each iteration of the RF-SVM algorithm, the lowest ordered feature will be
eliminated first, and the remaining features then be re-trained to obtain a new weight vector
for next round of feature ordering. For individual features, RF-SVM might not produce
optimal results. For groups of features, however, RE-SVM has the potential to produce
the best supplementary combinations of features. In practice, the SOC contents obtained
from chemical analysis were used as the class labels Y. The spectral information was used
as the feature input for the support vector machine Xg. The algorithm was implemented
with the libsvm-3.1 [FarutoUltimate3.1 Mcode] package based on MATLAB®) software
version R2015a (MathWorks, Inc., Natick, MA, USA). The optimization was done with
a two-dimensional grid searching. With multiple trainings and experiments, we finally
decided to use the epsilon-SVM model. The kernel function was selected as Sigmoid. The
Gamma value and Eps were set to 0.0039 and 0.01, respectively, and the tuning parameter
C was 1.

Random forest

Random forest is an ensemble learning technique developed by Breiman (2001) to improve
the regression trees method (Mutanga, Adam & Cho, 2012). In RF regression, the procedure
uses bootstrapping to repetitively generate subsamples from a training dataset and train a
tree from each subsample. Averaging through these trees results in large gain in reduced
variance. As in the previous section, predictors x represents the spectral data, while y
represents the actual SOC content in this study, the Abhisheck Jaiantila’s randomforest-
matlab package was applied for the implement of random forest learning (Liaw ¢ Wiener,
2002). In the present study, m, the number of sub-samples of the predictors was set to 500.

Model evaluation and comparison

All the above three algorithms were validated via 10 folds cross-validation. The cross-
validation correlation coefficient (R, ), and root mean square error of the cross validation
(RMSE,, ) were used to optimize all the model parameters. Precision indices of R, RMSE,,,
and residual prediction deviation (RPD) were also used to evaluate the performance of
these algorithms. Higher R, and lower RMSE,, indicate a more stable model. Similarly, for
the testing set, higher the R;, lower the RMSE, suggest better performance. The RPD was
used to assess the accuracy of the algorithm. If RPD > 2, then the algorithm has very reliable
prediction accuracy. If 1.4 < RPD < 2, then the prediction accuracy is acceptable. Only
if RPD < 1.4, the prediction accuracy is not acceptable (Chang et al., 2001). In addition,
the deviation of the scatterplot with predicted and measured SOC content from the 1:1
diagonal line can also be used to evaluate a particular algorithm’s prediction accuracy.
Intuitively, higher accuracy prediction algorithm will have a better fit along the 1:1 line
(Luan et al., 2013).
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Table 1 Descriptive statistics of soil organic carbon in both training and testing sets.

Models Sample size Min/% Max/% Mean/% St.dev/%
Training sets 70 0.02 2.97 0.51 0.64
Testing sets 70 0.01 3.42 0.40 0.65

Hyperion simulation

Despite advances in algorithm development, successful applications of satellite-based
methods are limited due to the relative unavailability of sensors with both fine spectral
and spatial resolution. The next generation multispectral and hyperspectral sensors such
as NASA’s Hyperspectral Infrared Imager (HyspIRI) attempt to address these issues with
both increased spatial and spectral resolution but are not yet available. No Hyperion
hyperspectral data were available for the study area during the study period. Considering
Hyperion shares similar spectral and spatial characteristics with HyspIRI, we simulated
Hyperion soil reflectance spectra by using the spectral response function shown in Eq. (5).

IO () p () d (M)
IO ) d (L)

where pgyperion 1s the simulated Hyperion reflectance spectra of band A; f (1) is the spectral

(5)

PHyperion n) =

response function of the simulated band A; p(A) is the measured reflectance spectral at
band A; and Ay and A,y are the lower and upper bounds of measured reflectance spectra,
respectively (Maimaitiyiming, Miller ¢& Ghulam, 2016).

RESULTS

Descriptive statistical analysis of SOC content

The statistical characteristics of both the training and testing sets were shown in Table 1.
The standard deviations between the training and testing sets were similar, and differences
between the average value was reasonably small. The fact suggests that the selection of both
data sets was representative. The spectral curves of soil samples with different SOC contents
were illustrated in Fig. 2, overall spectral reflectance increases as the SOC contents decrease.
The diagram shows that SOC contents of less than 1% and more than 2.5% correspond
to the highest and lowest reflectance, respectively. The pattern of the spectral reflectance
fluctuation remains similar regardless of the different SOC contents. Specifically, the
reflectance tends to be low in the visible bands (350-780 nm), but high in the infrared
bands (780-2,500 nm). The significant absorption features were in the range of 1,850-1,950
nm, and the spectral curves increased rapidly to the peak of 2,100 nm.

Comparing the results from this study with results reported in other regions (Hong et al.,
2018; Peng et al., 2014; Viscarra Rossel et al., 2006), we observe that the spectral reflectance
of soils in arid wetland regions were similar to those of agricultural soils, though in the
range from 1,900 to 2,100 nm, spectral reflectance of arid wetland soil increases faster than
that of the crop land.
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Figure 2 Spectral reflectance of different wetland soil organic carbon contents. (A) Arenosols, (B)
Solonetz, (C) Solonetz, (D) Solonchaks, (E) Solonetz.
Full-size Gal DOI: 10.7717/peerj.5714/fig-2

Results of ACO-iPLS algorithm
Although spectral data contains very large amount of data, not all of them are necessarily
informative towards detecting SOC contents (Stenberg et al., 2010). If all wavelengths were
applied in the construction of the models, some irrelevant spectral data could be included,
and yields inferior estimation accuracies (Liu, Zhang ¢ Zhang, 2008). Thus, the model
based on informative spectra could outperform those using all wavelengths.

For that reason, the ACO-iPLS algorithm first selected the informative spectra segments
(after pretreatments), and then relevant spectra segments were entered to the model
to predict the SOC content. The selected wavelengths and the modeling results with
ACO-iPLS were reported in Table 2. It was obvious that the original first order derivative
transformation with selected wavelengths yielded the best model performance with the
optimal R, and RMSE,, of 0.87 and 0.33%, respectively. For the testing set, R, was
0.83, RMSE, was 0.40%, and the RPD was 1.63, indicating reasonable prediction. Other
transformations yield rather low RPD scores (0.87 and 1.10, respectively).

Results of RF-SVM

We applied the RF-SVM algorithm to quantify the SOC contents using selected wavelengths
via the three transformations. The selected wavelengths and modeling results were reported
in Table 3. The result again suggested that the original first order derivative transformation
yielded the best performance. R, is 0.97, RMSE,, is 0.16%. For the testing set, the R, is 0.91,
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Table 2 Selected feature wavelengths, training sets and testing sets results by ACO-iPLS method.

Pre-processing Selected wavelengths Training sets Testing sets

R., RMSE,, R, RMSE, RPD
A 1,786~1,929 0.86 0.33 0.83 0.40 1.63
1/A 494~638 0.64 0.57 0.76 0.74 0.87
1gA’ 1,786~1,929 0.73 0.50 0.82 0.59 1.10

Table 3 Selected feature wavelengths, training sets and testing sets results by RE-SVM method.

Pre-processing Selected wavelengths Training sets Testing sets
R, RMSE,, R, RMSE, RPD
A 780, 1,911, 783, 779, 768, 759, 793, 794, 2,254, 910, 1,677, 0.97 0.16 0.91 0.27 2.41
1,912, 2,089, 745, 825, 2,088, 746, 2,090, 1,913, 1,751
1/A 663, 1,836, 658, 2,431, 2,494, 618, 999, 746, 370, 2,475, 960, 0.99 0.03 0.84 0.34 1.88
510, 1,081, 443, 1,681, 1,123, 360, 793, 2,123, 2,476
lgA’ 706, 736, 731, 1,943, 779, 721, 413, 510, 704, 397, 732, 0.99 0.03 0.81 0.45 1.44

1,944, 1,085, 2,091, 2,347, 881, 2,422, 1,966, 2,257, 2,111

Table 4 Selected feature wavelengths, training sets and testing sets results by RF method.

Pre-processing Selected wavelengths Training sets Testing sets
R., RMSE,, R, RMSE, RPD
A 794, 740, 758, 713, 741, 821, 789, 766, 613, 682, 732, 776, 0.98 0.15 0.92 0.33 1.98
822,720, 769, 746, 635, 733, 940, 668
1/A 1,403, 1,402, 1,390, 1,399, 1,405, 1,404, 2,189, 2,196, 620, 0.98 0.14 0.83 0.43 1.51
2,176, 822, 2,192, 809, 2,177, 670, 632, 2,191, 1,388, 727,
2,315
IgA’ 676, 633, 2,189, 2,202, 2,195, 675, 1,402, 2,183, 722, 632, 0.98 0.14 0.90 0.41 1.58

620, 703, 821, 2,205, 2,193, 689, 2,200, 646, 812, 714

RMSE; is 0.27%, and RPD is 2.41. The results indicated the RF-SVM algorithm recorded
overall better model performance. Even for the other two transformations, the RPDs also
reached 1.88 and 1.44, indicating that the algorithm could give reasonable prediction.

Results of RF

Based on the three transformations of spectral data, the selected feature bands and RF
modeling results were reported in Table 4. Again, the original first order derivative
transformation yields the best performance, R, was 0.98 and RMSE,, was 0.15%. For the
testing set, the R; is 0.92, RMSE; is 0.33%, and RPD is 1.98. The algorithm also yielded
very good prediction. Even for the other two transformations, the RPDs are 1.51 and 1.58,
indicating reasonably acceptable prediction accuracy.

From Tables 2—4, it was evident that the original first order derivative transformation of
the spectral information yielded the most reasonable modeling performance among all three
algorithms. Our discussion will then focus on modeling results based on this transformation
only. Figures 3-5 are the results of selected feature wavelengths under the first order
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derivative transformation. Table 5 lists the modeling performance using wavelengths after
first order derivative transformation with both the training and testing sets.

The ACO-iPLS algorithm subdivided the entire wavelength (350-2,500 nm) into 15
segments (Fig. 3). The 11th segments (1,786—1,929 nm) yielded the best performance with
the lowest RMSE value. From Fig. 4, based on RF-SVM algorithm, the optimal wavelengths
were in the segments of 745-910 nm and 1,911-2,254 nm. Based on mean decrease in
accuracy (Fig. 5), RF selected wavelengths ranging from 613 to 940 nm. Combing all three
selection results, the optimal wavelengths that were most relevant to SOC content are
located within segments of 745-910 nm and 1,911-2,254 nm for the arid Ebinur Lake
wetland soils.

From Table 5, we learn that the RF-SVM produces the highest RPD (>2) among the
three algorithms, followed by RF and ACO-iPLS. In addition, Fig. 6 shows scatterplots
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Table5 Comparison of the results by different models with first derivative spectra.

Modeling methods Training sets Testing sets

R., RMSE,, R, RMSE, RPD
AOC-iPLS 0.86 0.33 0.83 0.40 1.63
RF 0.98 0.15 0.92 0.33 1.98
RE-SVM 0.97 0.16 0.91 0.27 2.41

of predicted and measured SOC contents. The slope for the RF-SVM model were well
distributed on the 1:1 line indicating the best fit which further confirms the above
observations.

Simulation application to satellite data

The results of all three algorithms performed on laboratory-derived spectra data showed
that RF-SVM approach with the first derivative pre-processing produced the highest
estimation accuracy. In this practice, we evaluated the feasibility of simulated Hyperion
reflectance spectra to estimate SOC by using RF-SVM approach. The selected wavelengths
and the modeling results were illustrated in Table 6. Using the RF-SVM algorithm, the
optimal wavelengths were in the segments of 702—-824 nm and 2,083-2,426 nm. And there
was some difference between the feature bands of Hyperion and those of laboratory-derived
data. It was observed that the original first order derivative transformation with selected
wavelengths yielded higher R, (0.96) and RMSE,, of 0.23%. For the testing set, R, was
0.79, and RMSE; was 0.19%, the RPD was 1.61 (Fig. 7). The results suggest that VIS/NIR
bands of hyperspectral satellite data have a good potential for predicting wetland SOC
content in arid areas.

DISCUSSION

Applying spectral techniques to evaluate, monitor and predict SOC content is an important
approach, especially in arid regions where SOC is critical to soil quality yet soil sampling
often is expensive and sometimes very hard for laboratory tests. Establishing an effective
model to take advantage of the large amount of spectra information from VIS/NIR
spectroscopy technology is of great interest in the study of SOC content in arid regions.
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Figure 6 Measured content and the values estimated by SVM model with simulated EO-1 Hyperion
data.
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In the current study, we found that the original first order derivative transformation was
able to retain the most useful information from spectral data among the three discussed
transformations including original first order derivative, inversion of first order derivative,
and logarithm of first order derivative. Zornoza et al. (2008) also found similar results in
their study, with high coefficient of correlations of 0.95 and 0.98, which was consistent
with our results.

The massive information obtained from hyperspectral sensors often requires effective
algorithms to produce the best and most robust prediction. The selection of feature spectra
is hence a critical step in applying VIS/NIR spectroscopy technique. From Tables 2—4, we
could see that the approaches of RF-SVM and RF were able to select 20 wavelength segments,
and the ACO-iPLS selected a large chunk of segments that produce the most desired results.
Comparing the results of the three algorithms, we observed that the relevant wavelengths
concentrated in the range of 745-910 nm and 1,911-2,254 nm. Results obtained in the
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Table 6 Selected feature wavelengths and training sets and testing sets results by RF-SVM method with simulated EO-1 Hyperion data.

Modeling methods Selected wavelengths Training sets Testing sets
R, RMSE,, R, RMSE, RPD
RF-SVM 824, 813, 2,194, 2,426, 2,093, 702, 2,083, 712, 2,436, 803, 0.96 0.23 0.79 0.19 1.61
2,174, 2,214, 2,163, 2,416, 2,103, 722, 2,133, 1,810, 1,669,
2,123
S R=0.96 g R=0.79
E RMSEcv = 0.23 o B RMSE, = 0.19
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Figure 7 Comparison of the measured content and the values estimated by different models.
Full-size Gal DOI: 10.7717/peerj.5714/fig-7

current study were not in accord with previous research (400-800 nm, 1,030-1,080 nm
and 2,250-2,340 nm), this could be attributed to the difference among different soil types
(Wang et al., 2016).

In addition, our experiment with the three algorithms also indicated that different
algorithms yield different results. Among the three algorithms, the RF-SVM produced the
best results, followed by RF algorithm, while the ACO-iPLS algorithm performs least ideally.
We argue that the ACO-iPLS algorithm is not necessarily an inappropriate algorithm as the
results are still acceptable. However, ACO-iPLS algorithm, a bionic approach attempting to
mimic the ants’ intelligence, could yield effective optimization if the amount of information
was set to appropriate size. On the other hand, if the amount of information was massive,
the complexity of the information might lead to local optimal to dominate the optimization
process. Though by further fine-dividing the segments, we might be able to produce better
results, we are still at risk of being stuck at potential local optimal with the ACO-iPLS
algorithm. Random forest algorithm, on the other hand, uses multiple trees (the forest)
to produce enhanced learning outcomes. Because of its flexibility, it often produces the
best results with the training set since it can distinguish between the useful information
and inevitable noises existed within the training set. The problem, however, as with many
tree-related algorithms, is that it can easily slide to over-fitting and might be impacted
by the very skewed dataset which is the case for our dataset. The results from the current
study support this argument. The RMSE,, of the random forest algorithm for the training
set was 0.15, lowest among all three algorithms. While the RMSE,; was higher than that of
SVM (0.33 versus 0.27, Fig. 6), indicating possible over-fitting issues for the random forest
algorithm. SVM is a structural empirical risk model, the parameters of the decision function
are determined by empirical analysis. Since the goal of the algorithm when training the
parameters was to minimize risks, it allows for some errors during fitting while assigning
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certain penalty to such errors (by adjusting the tuning parameter, C). This also agrees
logically with the fact that there shall be inevitable noises in the training data. Our analysis
suggested that the SVM produced results were better. The RPD of the model reached 2.41
while those of RF and ACO-iPLS were 1.98 and 1.63, respectively. The results were in line
with Were ef al. (2015) and Viscarra Rossel ¢ Behrens (2010) who used similar algorithms
to study SOC contents in Kenya and Australia.

The results of simulated Hyperion spectral analysis showed that the feature wavelengths
pertaining to SOC were mainly located around the ranges of 702—-824 nm and 2,083-2,426
nm. This finding differs from previously reported work by Morgan et al. (2009) that
identified the feature wavelengths between 610 and 650 nm for SOC. It is worth noting
that the 702-824 nm wavelengths overlap with the findings by Ji, Viscarra Rossel ¢ Shi
(2015) who identified the absorption feature at the wavelengths from 600 to 800 nm for
SOC. Although the combination of laboratory-derived reflectance with RF-SVM produced
slightly better estimation than the simulated Hyperion reflectance spectra, the advantage
of the simulated approach is evident, which is critical for the potential uses of the planned
hyperspectral sensors soon to be available.

In fact, the simulated hyperspectral was constructed based on the specified spectral
response function and field-derived spectral data (Jin et al., 2017; Liu et al., 2009). However,
the obtained continuous spectrum information of every pixel was affected by geographical
atmospheric, meteorological, and lighting variations, e.g., cloud cover, precipitation, pixel
purity, and temporal-spatial resolution of ground target (Hill, 2013; Zhou et al., 2013).
Hence, there was a difference between the actual VIS/NIR reflectance and simulated
satellite data, the quantitative estimation models were only theoretically valid. To further
improve the applicable capability of the established model, the prediction accuracy,
combination of various simulated and actual satellite sensor data will be analyzed in
the future study. Various spaceborne hyperspectral data or imaging spectroscopy will be
available, e.g., ESA’s PROBA, Chinese GaoFen-4, and upcoming Germany’s DLR’s EnMAP,
which is very helpful for achievement of the quantitative analysis on remote sensing (Liu
et al., 2018). Therefore, actual satellite data should be used in future studies to evaluate
the SOM estimation model. We did not consider the effect of the spatial resolution of
remote sensing imagery on the estimation accuracy of SOC content. In terms of the actual
satellite data, the different radiometric correction and atmospheric correction approaches
could result in the changes of spectra of targets. Additionally, the actual satellite data and
the simulated satellite data differ because of the measurement errors, signal noises, and
atmospheric environment (Maimaitiyiming, Miller & Ghulam, 2016). The accuracy and
detection limits of estimations could be affected by these mentioned factors. In future
study, more intelligent algorithms will be applied to overcome the scale differences in both
spectral and spatial dimension of actual and simulated data.

This study clearly suggests that VIS/NIR spectroscopy is an effective method to detect
wetland SOC content of soils in arid regions. Our work provides a comprehensive evaluation
of models and algorithms for their power to identify relevant feature wavelengths to
estimate SOC. Such endeavor is of critical and practical importance. Increasing population
and intensive human activities have put ever increasing pressure on wetland in arid
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regions. Changes in the SOC content in fragile ecosystems can be drastic even with slight
increase of human activities (Cdmara et al., 2016; Smith et al., 2016). Such changes could
have significant impact on local climatic and ecological systems, and even contribute to
large-scale carbon equilibrium (Prasad et al., 2016). The proposed VIS/NIR spectroscopic
approach plus the relatively mature classification and prediction models provide effective
means to the local ecological and environmental management authorities.

CONCLUSION

In this study, the first order derivative transformation provides the best predictive power
among proposed wavelength transformation strategies (A’, 1/A’, and 1g(A”)). All three
algorithms consistently suggest that the wavelength segments of 745-910 nm and 1,911—
2,254 nm are the most effective spectral regions to detect SOC content. Among the three
models, SVM based recursive feature elimination algorithm produces the best overall results
for both the training and testing datasets with an RPD of 2.41. The other two approaches,
namely, ACO-iPLS and RF also produce reasonably well results following SVM. In addition,
the simulated EO-1 Hyperion data combined with SVM based recursive feature elimination
algorithm produces high accuracy of estimating SOC content with an RPD of 1.61. The
RF-SVM algorithm identified the wavelength segments of 702—-824 nm and 2,083-2,426 nm
as the most effective spectral regions to detect SOC content at the satellite level. Overall, the
simulated Hyperion data have a great potential for predicting wetland SOC content in arid
regions. The proposed combination of VIS/NIR spectroscopy technique and SVM based
recursive feature elimination algorithm provides a fast, economic, and robust approach to
monitor, detect, and predict SOC contents in the arid and semi-arid region wetlands.
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