137 research outputs found
Aqueous Sol-Gel Synthesis Methods for the Preparation of Garnet Crystal Structure Compounds
In the present review, the usefulness of aqueous sol-gel processes in the synthesis of garnet crystal structure compounds is discussed. The processing and characterization of yttrium aluminium garnet (YAG), lanthanide-doped YAG, lanthanide aluminium and gallium garnet materials, mixed-metal garnets and garnets containing silicon are described. The synthesis of garnet materials comprising nanoscale architectures is also discussed.http://dx.doi.org/10.5755/j01.ms.17.4.782</p
Itrio aliuminio granato sintezės kompiuterinis modeliavimas
On the basis of a two-dimesional model, we estimate diffusion and reaction rates of the yttrium aluminium garnet synthesis at high temperatures.Šiame darbe dvimačio modelio pagrindu mes įvertiname difuzijos ir reakcijos greičio koeficientus itrio aliuminio granato sintezėje prie aukštų temperatūrų
Organic-free synthesis of nanostructured SnO2 thin films by chemical solution deposition
Novel synthetic approach for preparation of single phase porous SnO2 thin films with controllable grain size and porosity has been developed. The entire process requires neither organic solvents nor addition of any complexing agent. The thin films were deposited using the spin coating technique from an aqueous solution prepared by dissolving tin(II) oxalate in hydrogen peroxide. X-ray diffraction analysis showed that the deposited films are single-phase and their crystallite size increases as the annealing temperature is increased from 300 to 800 °C. It was also found that the films exhibit a preferred (110) orientation of the crystallites. Scanning electron microscopy and atomic force microscopy were employed for the estimation of thickness and surface morphological features of the films. Thickness of the films after 10 deposition cycles was about 160 nm. Roughness of the films increased with the annealing temperature increasing. It has been found from the UV–Vis spectrometry measurements that the films are highly transparent in visible spectral range. The optical band gap was determined to be in the range from 3.86 to 4.00 eV depending on the annealing temperature.publishe
Chemical solution deposition of la-substituted BiFe0.5Sc0.5O3 perovskite thin films on different substrates
In the present work, polycrystalline Bi0.67La0.33Fe0.5Sc0.5O3 thin films were synthesized using
a simple and cost‐effective chemical solution deposition process employing the spin coating tech‐
nique. In order to check the feasibility of the fabrication of thin films on various types of substrates,
the films were deposited on Pt‐coated silicon, silicon, sapphire, corundum, fused silica and glass.
Based on the results of thermogravimetric analysis of precursor and thermal stability study, it was
determined that the optimal annealing temperature for the formation of perovskite structure is 600
°C. It was observed that the relative intensity of the pseudocubic peaks (001)p and (011)p in the XRD
patterns is influenced by the nature of substrates, suggesting that the formed crystallites have some
preferred orientation. Roughness of the films was determined to be dependent on the nature of the
substrate.publishe
Sol-Gel Synthesis and Characterization of Novel Y3−xMxAl5−yVyO12 (M—Na, K) Garnet-Type Compounds
In this study, for the first time to the best of our knowledge, the new garnets Y3−xNaxAl5O12, Y3−xKxAl5O12, Y3Al5−yVyO12, and Y3−xNaxAl5−yVyO12 with various stoichiometric compositions were successfully synthesized by the aqueous sol-gel method. All obtained samples were characterized by X-ray diffraction (XRD) analysis, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). It was determined from the XRD results that the formation of monophasic Y3−xNaxAl5O12, Y3−xKxAl5O12, Y3Al5−yVyO12, and Y3−xNaxAl5−yVyO12 garnets is possible only at limited doping levels. The highest substitutional level of doped metal was observed for the YAG doped with sodium (x = 1), and the lowest substitutional level was observed for the YAG doped with vanadium (y = 0.05). Furthermore, the obtained FTIR spectroscopy results were in good agreement with the XRD analysis data, i.e., they confirmed that the YAG is the main crystalline phase in the end products. The SEM was used to study the morphology of the garnets, and the results obtained showed that all synthesized samples were composed of nano-sized agglomerated crystallites
Investigation of lanthanum substitution effects in yttrium aluminium garnet: importance of solid state NMR and EPR methods
Copyright © 2020, Springer Science Business Media, LLC, part of Springer NatureIn this study, yttrium aluminium garnet (YAG) specimens in which yttrium was partially substituted by lanthanum Y3-xLaxAl5O12 (YLaAG) were prepared by an aqueous sol-gel method. YLaAG samples were analyzed by X-ray diffraction (XRD), solid state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) methods. The presence of Ce3+ ions as an impurity originating from starting material was determined, therefore, luminescence measurements of YLaAG samples were also recorded. It was demonstrated that luminescent properties are strongly dependent on the phase composition of synthesized species. The XRD analysis results showed that only low substitution of yttrium by lanthanum is possible in Y3-xLaxAl5O12 without destroying garnet crystal structure. It was also demonstrated, that solid state NMR and EPR methods are indispensable tools for the explanation of processes and properties observed in the newly synthesized Y3-xLaxAl5O12 compounds. ---- / / / ---- This is the preprint version of the following article: Laurikenas, A., Sakalauskas, D., Marsalka, A. et al. Investigation of lanthanum substitution effects in yttrium aluminium garnet: importance of solid state NMR and EPR methods. J Sol-Gel Sci Technol (2020). https://doi.org/10.1007/s10971-020-05445-2, which has been published in final form at https://link.springer.com/article/10.1007/s10971-020-05445-2. This article may be used for non-commercial purposes in accordance with Springer Terms and Conditions for Sharing and Self-Archiving.This work was supported by a Research grant NEGEMAT (No. S-MIP-19-59) from the Research Council of Lithuania. Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART²
A novel one-pot synthesis and characterization of silk fibroin/α-calcium sulfate hemihydrate for bone regeneration
Funding Information: Funding: Support for this work was provided by the Ministry of Science and Technology, Taiwan MOST 109-2224-E-038-002. The APC was funded by MOST. Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.This study aims to fabricate silk fibroin/calcium sulfate (SF/CS) composites by one-pot synthesis for bone regeneration applications. The SF was harvested from degummed silkworm cocoons, dissolved in a solvent system comprising of calcium chloride:ethanol:water (1:2:8), and then mixed with a stoichiometric amount of sodium sulfate to prepare various SF/CS composites. The crystal pattern, glass transition temperature, and chemical composition of SF/CS samples were analyzed by XRD, DSC, and FTIR, respectively. These characterizations revealed the successful synthesis of pure calcium sulfate dihydrate (CSD) and calcium sulfate hemihydrate (CSH) when it was combined with SF. The thermal analysis through DSC indicated molecular-level interaction between the SF and CS. The FTIR deconvolution spectra demonstrated an increment in the β-sheet content by increasing CS content in the composites. The investigation into the morphology of the composites using SEM revealed the formation of plate-like dihydrate in the pure CS sample, while rod-like structures of α-CSH surrounded by SF in the composites were observed. The compressive strength of the hydrated 10 and 20% SF-incorporated CSH composites portrayed more than a twofold enhancement (statistically significant) in comparison to that of the pure CS samples. Reduced compressive strength was observed upon further increasing the SF content, possibly due to SF agglomeration that restricted its uniform distribution. Therefore, the one-pot synthesized SF/CS composites demonstrated suitable chemical, thermal, and morphological properties. However, additional biological analysis of its potential use as bone substitutes is required.publishersversionPeer reviewe
Dielectric properties of Bi-substituted LDHs synthesized by co-precipitation and sol-gel methods
Magnesium-aluminum-bismuth layered double hydroxides (Mg3Al1-xBix; LDHs) were prepared using both coprecipitation and sol-gel methods. For the preparation of Mg/Al/Bi LDH by the co-precipitation method, the appropriate amounts of dissolved starting materials (Al(NO3)3 · 9H2O, Mg(NO3)2 · 6H2O and Bi(NO3)3 · 5H2O) were mixed with a solution of NaHCO3:NaOH. In the sol-gel processing, the precursor Mg-Al-Bi-O gels were synthesized using the same starting materials and ethylene glycol as complexing agent. The mixed-metal oxides obtained by subsequent heating of Mg-Al-Bi-O gels at 650 °C were reconstructed to Mg3Al1-xBix LDHs in water at 80 °C. All the synthesized products were characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and dielectric measurements.publishe
Temperature-Induced Structural Transformations in Undoped and Eu3+-Doped Ruddlesden–Popper Phases Sr2SnO4 and Sr3Sn2O7: Relation to the Impedance and Luminescence Behaviors
We report that luminescence of Eu3+ ion incorporated into Ruddlesden–Popper phases allows monitoring phase transition in powders (instead of single crystals), in a time-efficient manner (compared to neutron diffraction), and importantly, with greater sensitivity than previous methods. Crystal structure and dielectric response of undoped and 0.5%Eu3+-doped Sr3Sn2O7 ceramics were studied as a function of temperature over the temperature range of 300–800 K. The luminescence studies of 0.5%Eu3+-doped Sr2SnO4 and Sr3Sn2O7 samples were performed in the temperature range of 80–500 K. These results were compared with the respective dependences for the undoped compounds. The structural transformations in 0.5%Eu3+-doped Sr3Sn2O7 were found at 390 and 740 K. The former is associated with the isostructural atomic rearrangement that resulted in a negative thermal expansion along two of three orthorhombic crystallographic axes, while the latter corresponds to the structural transition from the orthorhombic Amam phase to the tetragonal I4/mmm one. A similar temperature behavior with the structural transformations in the same temperature ranges was observed in undoped Sr3Sn2O7, although the values of lattice parameters of the Eu3+-doped and undoped compounds were found to be slightly different indicating an incorporation of europium in the crystal lattice. A dielectric anomaly associated with a structural phase transition was observed in Sr3Sn2O7 at 390 K. Optical measurements performed over a wide temperature range demonstrated a clear correlation between structural transformations in Eu3+-doped Sr2SnO4 and Sr3Sn2O7 and the temperature anomalies of their luminescence spectra, suggesting the efficacy of this method for the determination of subtle phase transformations
- …