2,629 research outputs found
Fermion propagator for QED_3 in the IR domain
We evaluate the fermion propagator in parity-conserving QED_3 with N
flavours, in the context of an IR domain approximation. This provides results
which are non-perturbative in the loopwise expansion sense. We include
fermion-loop effects, and show that they are relevant to the chiral symmetry
breaking phenomenon, that can be understood in this context.Comment: 11 pages, LaTeX; typo corrected in Eq.3
Generation of slow intense optical solitons in a resonance photonic crystal
We demonstrate interesting and previously unforeseen properties of a pair of
gap solitons in a resonant photonic crystal which are predicted and explained
in a physically transparent form using both analytical and numerical methods.
The most important result is the fact that an oscillating gap soliton created
by the presence of a localized population inversion inside the crystal can be
manipulated by means of a proper choice of bit rate, phase and amplitude
modulation. Developing this idea, we are able to obtain qualitatively different
regimes of a resonant photonic crystal operation. In particular, a noteworthy
observation is that both the delay time and amplitude difference must exceed a
certain level to ensure effective control over the soliton dynamics
Understanding Heisenberg's 'Magical' Paper of July 1925: a New Look at the Calculational Details
In July 1925 Heisenberg published a paper [Z. Phys. 33, 879-893 (1925)] which
ended the period of `the Old Quantum Theory' and ushered in the new era of
Quantum Mechanics. This epoch-making paper is generally regarded as being
difficult to follow, perhaps partly because Heisenberg provided few clues as to
how he arrived at the results which he reported. Here we give details of
calculations of the type which, we suggest, Heisenberg may have performed. We
take as a specific example one of the anharmonic oscillator problems considered
by Heisenberg, and use our reconstruction of his approach to solve it up to
second order in perturbation theory. We emphasize that the results are
precisely those obtained in standard quantum mechanics, and suggest that some
discussion of the approach - based on the direct computation of transition
amplitudes - could usefully be included in undergraduate courses in quantum
mechanics.Comment: 24 pages, no figures, Latex, submitted to Am. J. Phy
Quantal interferometry with dissipative internal motion
In presence of dissipation, quantal states may acquire complex-valued phase
effects. We suggest a notion of dissipative interferometry that accommodates
this complex-valued structure and that may serve as a tool for analyzing the
effect of certain kinds of external influences on quantal interference. The
concept of mixed-state phase and concomitant gauge invariance is extended to
dissipative internal motion. The resulting complex-valued mixed-state
interference effects lead to well-known results in the unitary limit and in the
case of dissipative motion of pure quantal states. Dissipative interferometry
is applied to fault-tolerant geometric quantum computation.Comment: Slight revision, journal reference adde
Dynamical Mass Generation in a Finite-Temperature Abelian Gauge Theory
We write down the gap equation for the fermion self-energy in a
finite-temperature abelian gauge theory in three dimensions. The instantaneous
approximation is relaxed, momentum-dependent fermion and photon self-energies
are considered, and the corresponding Schwinger-Dyson equation is solved
numerically. The relation between the zero-momentum and zero-temperature
fermion self-energy and the critical temperature T_c, above which there is no
dynamical mass generation, is then studied. We also investigate the effect
which the number of fermion flavours N_f has on the results, and we give the
phase diagram of the theory with respect to T and N_f.Comment: 20 LaTeX pages, 4 postscript figures in a single file, version to
appear in Physical Review
On the Derivative Expansion at Finite Temperature
In this short note, we indicate the origin of nonanalyticity in the method of
derivative expansion at finite temperature and discuss some of its
consequences.Comment: 7 pages, UR-1363, ER40685-81
Non-trivial Infrared Structure in (2+1)-dimensional Quantum Electrodynamics
We show that the gauge-fermion interaction in multiflavour
-dimensional quantum electrodynamics with a finite infrared cut-off is
responsible for non-fermi liquid behaviour in the infrared, in the sense of
leading to the existence of a non-trivial fixed point at zero momentum, as well
as to a significant slowing down of the running of the coupling at intermediate
scales as compared with previous analyses on the subject. Both these features
constitute deviations from fermi-liquid theory. Our discussion is based on the
leading- resummed solution for the wave-function renormalization of the
Schwinger-Dyson equations . The present work completes and confirms the
expectations of an earlier work by two of the authors (I.J.R.A. and N.E.M.) on
the non-trivial infrared structure of the theory.Comment: 10 pages (LaTex), 5 figures (Postscript
Dynamical Symmetry Breaking With a Fourth Generation
Adding a fourth generation to the Standard Model and assuming it to be valid
up to some cutoff \Lambda, we show that electroweak symmetry is broken by
radiative corrections due to the fourth generation. The effects of the fourth
generation are isolated using a Lagrangian with a genuine scalar without
self-interactions at the classical level. For masses of the fourth generation
consistent with electroweak precision data (including the B \rightarrow K \pi\
CP asymmetries) we obtain a Higgs mass of the order of a few hundreds GeV and a
cutoff \Lambda\ around 1-2 TeV. We study the reliability of the perturbative
treatment used to obtain these results taking into account the running of the
Yukawa couplings of the fourth quark generation with the aid of the
Renormalization Group (RG) equations, finding similar allowed values for the
Higgs mass but a slightly lower cut-off due to the breaking of the perturbative
regime. Such low cut-off means that the effects of new physics needed to
describe electroweak interactions at energy above \Lambda\ should be measurable
at the LHC. We use the minimal supersymmetric extension of the standard model
with four generations as an explicit example of models realizing the dynamical
electroweak symmetry breaking by radiative corrections and containing new
physics. Here, the cutoff is replaced by the masses of the squarks and
electroweak symmetry breaking by radiative corrections requires the squark
masses to be of the order of 1 TeV.Comment: 20 pages, 7 figures. New section adde
- …