5 research outputs found

    Pharmacological Extracts and Molecules from Virola Species: Traditional Uses, Phytochemistry, and Biological Activity

    Get PDF
    Virola is the largest genus of Myristicaceae in America, comprising about 60 species of medium-sized trees geographically spread from Mexico to southern Brazil. The plant species of this genus have been widely used in folk medicine for the treatment of several ailments, such as rheumatic pain, bronchial asthma, tumors in the joints, intestinal worms, halitosis, ulcers, and multiple infections, due to their pharmacological activity. This review presents an updated and comprehensive summary of Virola species, particularly their ethnomedicinal uses, phytochemistry, and biological activity, to support the safe medicinal use of plant extracts and provide guidance for future research. The Virola spp.’s ethnopharmacology, including in the treatment of stomach pain and gastric ulcers, as well as antimicrobial and tryponosomicidal activities, is attributable to the presence of a myriad of phytoconstituents, such as flavonoids, tannins, phenolic acids, lignans, arylalkanones, and sitosterol. Hence, such species yield potential leads or molecular scaffolds for the development of new pharmaceutical formulations, encouraging the elucidation of not-yet-understood action mechanisms and ascertaining their safety for humansThis work was supported by Xunta de Galicia (Servizo Galego de Saude, SERGAS), through a research-staff contract (ISCIII/SERGAS) to O.G. and F.L., who are Staff Personnel (I3SNS stable Researcher); by Instituto de Salud Carlos III (ISCIII) and by FEDER through a “Sara Borrell” Researcher contract to V.F. (CD16/00111); and a predoctoral research scholarship to C.R.-F. (Exp.18/00188). M.G.-R. is a recipient of a predoctoral contract funded by Xunta de Galicia (IN606A-2020/010). A.C.-B. is a recipient of a predoctoral contract funded by Secretaría de Estado de Universidades, Investigación, Desarrollo e Innovación, Ministerio de Universidades (FPU2018-04165). G.R.C. is a doctoral student of the Coordination for the Improvement of Higher Education Personnel (CAPES) with a doctoral scholarship (Finance Code 001). T.M.C.P. is a Research Productivity Fellow of the National Council for Scientific and Technological Development (CNPq), Brazil (TMCP 309277/2019-1). O.G. is a member of the RETICS Programme (RD16/0012/0014) (RIER: Red de Investigación en Inflamación y Enfermedades Reumáticas) via ISCIII and FEDER. F.L. is a member of CIBERCV (Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares). ISCIII and FEDER also support O.G. and J.P. (PI17/00409 and PI20/00902). This work was supported by the Research Executive Agency of the European Union in the framework of the MSCA-RISE Action of the H2020 Programme (project number, 734899), and Xunta de Galicia, Consellería de Educación, Universidade e Formación Profesional, and Consellería de Economía, Emprego e Industria (GAIN) (GPC IN607B2019/10), supported O.G.S

    Asprosin in health and disease, a new glucose sensor with central and peripheral metabolic effects

    Get PDF
    Adipose tissue malfunction leads to altered adipokine secretion which might consequently contribute to an array of metabolic diseases spectrum including obesity, diabetes mellitus, and cardiovascular disorders. Asprosin is a novel diabetogenic adipokine classified as a caudamin hormone protein. This adipokine is released from white adipose tissue during fasting and elicits glucogenic and orexigenic effects. Although white adipose tissue is the dominant source for this multitask adipokine, other tissues also may produce asprosin such as salivary glands, pancreatic B-cells, and cartilage. Significantly, plasma asprosin levels link to glucose metabolism, lipid profile, insulin resistance (IR), and β-cell function. Indeed, asprosin exhibits a potent role in the metabolic process, induces hepatic glucose production, and influences appetite behavior. Clinical and preclinical research showed dysregulated levels of circulating asprosin in several metabolic diseases including obesity, type 2 diabetes mellitus (T2DM), polycystic ovarian syndrome (PCOS), non-alcoholic fatty liver (NAFLD), and several types of cancer. This review provides a comprehensive overview of the asprosin role in the etiology and pathophysiological manifestations of these conditions. Asprosin could be a promising candidate for both novel pharmacological treatment strategies and diagnostic tools, although developing a better understanding of its function and signaling pathways is still needed

    Monomeric CRP regulates inflammatory responses in human intervertebral disc cells

    No full text
    Aims: CRP is an acute-phase protein that is used as a biomarker to follow severity and progression in infectious and inflammatory diseases. Its pathophysiological mechanisms of action are still poorly defined. CRP in its pentameric form exhibits weak anti-inflammatory activity. The monomeric isoform (mCRP) exerts potent proinflammatory properties in chondrocytes, endothelial cells, and leucocytes. No data exist regarding mCRP effects in human intervertebral disc (IVD) cells. This work aimed to verify the pathophysiological relevance of mCRP in the aetiology and/or progression of IVD degeneration. Methods: We investigated the effects of mCRP and the signalling pathways that are involved in cultured human primary annulus fibrosus (AF) cells and in the human nucleus pulposus (NP) immortalized cell line HNPSV-1. We determined messenger RNA (mRNA) and protein levels of relevant factors involved in inflammatory responses, by quantitative real-time polymerase chain reaction (RT-qPCR) and western blot. We also studied the presence of mCRP in human AF and NP tissues by immunohistochemistry. Results: We demonstrated that mCRP increases nitric oxide synthase 2 (NOS2), cyclooxygenase 2 (COX2), matrix metalloproteinase 13 (MMP13), vascular cell adhesion molecule 1 (VCAM1), interleukin (IL)-6, IL-8, and Lipocalin 2 (LCN2) expression in human AF and NP cells. We also showed that nuclear factor-κβ (NF-κβ), extracellular signal-regulated kinase 1/2 (ERK1/2), and phosphoinositide 3-kinase (PI3K) are at play in the intracellular signalling of mCRP. Finally, we demonstrated the presence of mCRP in human AF and NP tissues. Conclusion: Our results indicate, for the first time, that mCRP can be localized in IVD tissues, where it triggers a proinflammatory and catabolic state in degenerative and healthy IVD cells, and that NF-κβ signalling may be implicated in the mediation of this mCRP-induced state. Cite this article: Bone Joint Res 2023;12(3):189–198

    Leptin in Osteoarthritis and Rheumatoid Arthritis: Player or Bystander?

    Get PDF
    White adipose tissue (WAT) is a specialized tissue whose main function is lipid synthesis and triglyceride storage. It is now considered as an active organ secreting a plethora of hormones and cytokines namely adipokines. Discovered in 1994, leptin has emerged as a key molecule with pleiotropic functions. It is primarily recognized for its role in regulating energy homeostasis and food intake. Currently, further evidence suggests its potent role in reproduction, glucose metabolism, hematopoiesis, and interaction with the immune system. It is implicated in both innate and adaptive immunity, and it is reported to contribute, with other adipokines, in the cross-talking networks involved in the pathogenesis of chronic inflammation and immune-related diseases of the musculo-skeletal system such as osteoarthritis (OA) and rheumatoid arthritis (RA). In this review, we summarize the most recent findings concerning the involvement of leptin in immunity and inflammatory responses in OA and RA

    An update on the role of leptin in the immuno-metabolism of cartilage

    Get PDF
    Abstract Since its discovery in 1994, leptin has been considered as an adipokine with pleiotropic effects. In this review, we summarize the actual information about the impact of this hormone on cartilage metabolism and pathology. Leptin signalling depends on the interaction with leptin receptor LEPR, being the long isoform of the receptor (LEPRb) the one with more efficient intracellular signalling. Chondrocytes express the long isoform of the leptin receptor and in these cells, leptin signalling, alone or in combination with other molecules, induces the expression of pro-inflammatory molecules and cartilage degenerative enzymes. Leptin has been shown to increase the proliferation and activation of immune cells, increasing the severity of immune degenerative cartilage diseases. Leptin expression in serum and synovial fluid are related to degenerative diseases such as osteoarthritis (OA), rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Inhibition of leptin signalling showed to have protective effects in these diseases showing the key role of leptin in cartilage degeneration
    corecore