3 research outputs found

    Interplay of catalytic subsite residues in the positioning of α-d-glucose 1-phosphate in sucrose phosphorylase

    Get PDF
    AbstractKinetic and molecular docking studies were performed to characterize the binding of α-d-glucose 1-phosphate (αGlc 1-P) at the catalytic subsite of a family GH-13 sucrose phosphorylase (from L. mesenteroides) in wild-type and mutated form. The best-fit binding mode of αGlc 1-P dianion had the phosphate group placed anti relative to the glucosyl moiety (adopting a relaxed 4C1 chair conformation) and was stabilized mainly by hydrogen bonds from residues of the enzyme׳s catalytic triad (Asp196, Glu237 and Asp295) and from Arg137. Additional feature of the αGlc 1-P docking pose was an intramolecular hydrogen bond (2.7Å) between the glucosyl C2-hydroxyl and the phosphate oxygen. An inactive phosphonate analog of αGlc 1-P did not show binding to sucrose phosphorylase in different experimental assays (saturation transfer difference NMR, steady-state reversible inhibition), consistent with evidence from molecular docking study that also suggested a completely different and strongly disfavored binding mode of the analog as compared to αGlc 1-P. Molecular docking results also support kinetic data in showing that mutation of Phe52, a key residue at the catalytic subsite involved in transition state stabilization, had little effect on the ground-state binding of αGlc 1-P by the phosphorylase. However, when combined with a second mutation involving one of the catalytic triad residues, the mutation of Phe52 by Ala caused complete (F52A_D196A; F52A_E237A) or very large (F52A_D295A) disruption of the proposed productive binding mode of αGlc 1-P with consequent effects on the enzyme activity. Effects of positioning of αGlc 1-P for efficient glucosyl transfer from phosphate to the catalytic nucleophile of the enzyme (Asp196) are suggested. High similarity between the αGlc 1-P conformers bound to sucrose phosphorylase (modeled) and the structurally and mechanistically unrelated maltodextrin phosphorylase (experimental) is revealed

    Lipophilic sugar nucleotide synthesis by structure-based design of nucleotidylyltransferase substrates.

    No full text
    Structure-based design of alkyl sugar-1-phosphates provides an efficient nucleotidylyltransferase-catalyzed synthesis of a series of new lipophilic sugar nucleotides possessing long or branched alkyl chains, thereby demonstrating the utility of nucleotidylyltransferases to catalyze the synthesis of sugar nucleotides with potential applications in lipopolysaccharide and lipoglycopeptide biosynthesis.Peer reviewed: YesNRC publication: Ye
    corecore