5 research outputs found

    Voltage profile improvement and losses minimization for Hayin Rigasa radial network Kaduna using distributed generation

    Get PDF
    This research work has presented the application of distributed generation (DG) units in a simultaneous placement approach on IEEE 33 radial test systems for validation of the technique with further implementation on 56-Bus Hayin Rigasa feeder. The genetic algorithm (GA) is employed in obtaining the optimal sizes and load loss sensitivity index for locations of the DGs for entire active and reactive power loss reduction. The voltage profile index is computed for each bus of the networks to ascertain the weakest voltage bus of the network before and after DG and circuit breaker allocation. The simultaneous placement approach of the DGs is tested with the IEEE 33-bus test networks and Hayin Rigasa feeder network and the results obtained are confirmed by comparing with the results gotten from separate DGs allocation on the networks. For IEEE 33-bus system, the simultaneous allocation of DGs and of optimal sizes 750 kW, 800 kW and at locations of buses 2 and 6 respectively, lead to a 66.49 % and 68.64 % drop in active and reactive power loss and 3.02 % improvement in voltage profile. For the 56-bus Hayin Rigasa network in Kaduna distribution network, the simultaneous placement of DGs of sizes 1,470 kW and 1490 kW at locations of bus 16 and 23 respectively, lead to a 79.54 % and 73.98 % drop in active and reactive power loss and 15.94 % improvement in voltage profile. From results comparison, it is evident that the allocation of DGs using the combination GA and load loss sensitivity index, gives an improved performance in relations to power loss reduction and voltage profile improvements of networks when compared to without DGs

    Impact of faults on bus stability on an island 330kV mesh network on the Nigerian grid

    Get PDF
    This study carried out an assessment on the impact of faults on bus stability along the Benin-IkejaWest-Aiyede-Oshogbo-Benin (BIAOB) 330kV island network. The sensitivity of BIAOB as a ring network on the Nigerian grid aroused the interest behind its choice for this study. The network parameters were collated from the National Control Centre, Oshogbo and the network was modeled on the MATLAB 2015 environment using the obtained data. A high reactive power flow was observed in all the buses while the lowest voltage profile was observed on the Line-Line-Line-Ground (L-L-L-G) simulated in bus 1. This is an indication that symmetrical faults have the greatest impact on the network. Further results showed that the BIAOB network has a better voltage profile when compared with other radial network from existing literature. The paper concluded by recommending the closure of more radial network on the grid in order to improve its performance

    Microgrid, Its Control and Stability: The State of The Art

    Get PDF
    Some of the challenges facing the power industries globally include power quality and stability, diminishing fossil fuel, climate change amongst others. The use of distributed generators however is growing at a steady pace to address these challenges. When interconnected and integrated with storage devices and controllable load, these generators operate together in a grid, which has incidental stability and control issues. The focus of this paper, therefore, is on the review and discussion of the different control approaches and the hierarchical control on a microgrid, the current practice in the literature concerning stability and the control techniques deployed for microgrid control; the weakness and strength of the different control strategies were discussed in this work and some of the areas that require further research are highlighted

    Identification of Radar Signals Based on Time-Frequency Agility using Short-Time Fourier Transform

    Get PDF
    With modern advances in radar technologies and increased complexity in aerial battle, there is need for knowledge acquisition on the abilities and operating characteristics of intercepted hostile systems. The required knowledge obtained through advanced signal processing is necessary for either real time-warning or in order to determine Electronic Order of Battle (EOB) of these systems. An algorithm was therefore developed in this paper based on a joint Time-Frequency Distribution (TFD) in order to identify the time-frequency agility of radar signals based on its changing pulse characteristics. The joint TFD used in this paper was the square magnitude of the Short-Time Fourier Transform (STFT), where power and frequency obtained at instants of time from its Time-Frequency Representation (TFR) was used to estimate the time and frequency parameters of the radar signals respectively. Identification was thereafter done through classification of the signals using a rule-based classifier formed from the estimated time and frequency parameters. The signals considered in this paper were the simple pulsed, pulse repetition interval modulated, frequency hopping and the agile pulsed radar signals, which represent cases of various forms of agility associated with modern radar technologies. Classification accuracy was verified using the Monte Carlo simulation performed at various ranges of Signal-to-Noise Ratios (SNRs) in the presence of noise modelled by the Additive White Gaussian Noise (AWGN). Results obtained showed identification accuracy of 99% irrespective of the signal at a minimum SNR of 0dB where signal and noise power were the same. The obtained minimum SNR at this classification accuracy showed that the developed algorithm can be deployed practically in the electronic warfare field for accurate agility classification of airborne radar signals

    Fabrication of a GSM-based intruder detection system prototype based on ultrasonic sensor

    No full text
    The design and construction of GSM based ultrasonic intruder detection system for detecting an intruder through a protected environment was carried out and presented in this paper. An alarm is triggered when intrusion is detected through the use of ultrasonic sensor. Also, SMS is sent in the form of text to the owner’s mobile number via the GSM module being installed. The configuration and coordination required for the system units to function effectively were carried out by a programmed ATMEGA16 microcontroller. AC and DC voltage supplies were incorporated into the system to provide a constant power supply. The fabricated system was tested and found to work successfully in accordance with the target design specifications carried out as the intruder was successfully detected and SMS sent
    corecore