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Abstract  Keywords 

With modern advances in radar technologies and increased complexity in aerial battle, 
there is need for knowledge acquisition on the abilities and operating characteristics of 
intercepted hostile systems. The required knowledge obtained through advanced signal 
processing is necessary for either real time-warning or in order to determine Electronic 
Order of Battle (EOB) of these systems. An algorithm was therefore developed in this 
paper based on a joint Time-Frequency Distribution (TFD) in order to identify the 
time-frequency agility of radar signals based on its changing pulse characteristics. The 
joint TFD used in this paper was the square magnitude of the Short-Time Fourier 
Transform (STFT), where power and frequency obtained at instants of time from its 
Time-Frequency Representation (TFR) was used to estimate the time and frequency 
parameters of the radar signals respectively. Identification was thereafter done through 
classification of the signals using a rule-based classifier formed from the estimated time 
and frequency parameters. The signals considered in this paper were the simple pulsed, 
pulse repetition interval modulated, frequency hopping and the agile pulsed radar 
signals, which represent cases of various forms of agility associated with modern radar 
technologies. Classification accuracy was verified using the Monte Carlo simulation 
performed at various ranges of Signal-to-Noise Ratios (SNRs) in the presence of noise 
modelled by the Additive White Gaussian Noise (AWGN). Results obtained showed 
identification accuracy of 99% irrespective of the signal at a minimum SNR of 0dB 
where signal and noise power were the same. The obtained minimum SNR at this 
classification accuracy showed that the developed algorithm can be deployed practically 
in the electronic warfare field for accurate agility classification of airborne radar signals. 

Received 28 June 2018; Revised 8 August 2018; Accepted 11 August 2018; Available online 14 August 2018.     

 

Additive white Gaussian 
noise;  

Electronic order of 
battle; 

Short-time Fourier 
transform; 

Signal-to-noise ratio; 

Time-frequency 
distribution; 

Time-frequency 
representation. 

 

 

Copyright © 2018 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

1. Introduction 

Electronic Warfare (EW) is the art (or science) of conserving the use of the electromagnetic spectrum for friendly 
use while denying its use to the enemy (Adamy, 2001). The field of Electronic Intelligence (ELINT) for which 
this paper finds its practical application, is a major aspect of the Electronic Support Measures (ESM) component 
of EW. ELINT is the process of analysing airborne radar signals through estimation and identifying its various 
signal parameters (Neri, 2006; Wiley, 2006). Radar uses radio waves to determine the range, altitude, direction 
or speed of objects such as ships, aircrafts, guided missiles, space crafts, motor vehicles, weather formations, and 
terrains (Wolff, 2009). Besides the carrier frequency, an airborne radar signal can be characterised by the Pulse 
Repetition Interval (PRI) and the pulse width (Elsworth, 2010).  

One major problem associated with radar communication is limitations due to noise, therefore a good 
ELINT site is therefore, needed to recover information from radar signals located at far distances or beyond the 
radar’s allowed perspective of low SNR characteristics. Pulse modified radar signals such as the pulse 
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compression and frequency hopping radar signals are used mostly by military to achieve Low Probability of 
Interception (LPI). These signals are usually of unique characteristics different from the non-militarized radar 
emitter signals, thus making them harder to detect or jam. This signifies the need for research into these problems 
of radar signal classification and identification for proper response or counteraction. 

Recently, Li & Jiang (2014) proffered a new recognition method for LPI polyphase coded signals which 
included Frank, P1, P2, P3, and P4 code using time-frequency rate distribution. The simulation experiment 
results demonstrated that the proposed method has a high accurate recognition rate for various polyphase codes, 
even under low SNR. However, signals of interests were all members of only one modulation type of LPI signals. 
Ahmad & Sha’ameri (2015) presented Airborne Radar signal Type and Analysis and Classification (ARTAC) 
system that used the spectrogram to classify five different types of radar signals. The method achieved a 
classification accuracy of 90 percent at a good SNR of 6.2dB. However, the method developed was based on 
classifying radar signal types suitable for pre-analysis only. Stevens & Schuckers (2016) presented a comparison 
of two methods for the characterization of LPI frequency hopping signal of 4-components and 8-components 
type, whose goal were “to see and not to be seen”. The two methods were the spectrogram and the scalogram. 
Results obtained indicated that the scalogram outperformed the spectrogram by 11% in terms of detection. 
Despite achieving the aim of showing the superiority of the scalogram, only one type of LPI signal was 
considered involving frequency hopping. Erdogan et al. (2017) used a novel methodology of Cross Wigner 
Hough Transform (XWHT) for detection and parameter extraction of frequency modulated continuous 
waveforms (FMCW) signals. Simulation results show the chirp rate estimation performance of 99% at low SNR 
of -3dB and above. However, similar short coming is shared with previous work (Stevens & Schuckers, 2016). 
Cao et al. (2018) proposed a novel method for radar emitter identification using the Bispectrum Based 
Hierarchical Extreme Learning Machine (BS+H-ELM) on different LPI radar signals. Results obtained showed 
that this method outperform other extreme learning machine methods with recognition accuracy of over 90% 
at 1dB. However other sub-group of the LPI radar signals such as the polyphase shift keying ones were not 
considered. 

It is evident from these reviewed literatures that several researches have been given significant attention in 
the field of ELINT on the development of algorithms for the analysis and classification of radar signals to 
determine their capabilities using time-frequency related techniques. Therefore this paper was aimed at 
developing an algorithm to determine the agility information content of intercepted four different airborne radar 
signals using the low computational complexity of Short-Time Fourier Transform (STFT). Instantaneous Power 
(IP) and Instantaneous Frequency (IF) were approximated from STFT to extract the time and frequency 
parameters Pulse Width (PW), Pulse Repetition Intervals (PRIs) and carrier frequencies) in order to classify these 
signals. Thereafter performance analysis was carried out through Probability of Correct Identification (POCI) 
obtainment using Monte Carlo simulation. This simulation was performed at various ranges of SNR in the 
presence of AWGN. 

2.  Brief Overview on Radar and Radar Signals 

The word radar stands for radio detection and ranging, which indicates the basic purpose of radar is to detect 
and determine the location of a target. The detection and ranging are achieved with the aid of transmitter 
transmitting electromagnetic pulses on the principle of generating an electromagnetic pulse signal, transmits it 
through a medium and waits for an echo to return (Wolff, 2009). PW and PRI are two main time characteristics 
of a pulsed radar signal. The PW and PRI measured in seconds is the time the radar system takes to radiate each 
pulse and time between the beginnings of the pulses respectively. They are used to determine various forms of 
the radar range characteristics such as the range resolution and unambiguous range among other radar 
characteristics (Daniyan et al., 2015).The operating frequency of the radar is known as the carrier or centre 
frequency and its main responsibility is the transmitting of information within the PW duration (Skolnik, 2008).  

A radar signal with constant time parameters all through and sinusoidal modulation of one carrier frequency 
is tagged as simple modulated radar signal. Recently, this signal was used in a radar signal estimation configuration 
(Tekanyi et al., 2017) and automatic radar waveform recognition system (Zhang et al., 2017). The PRI modulated 
radar signal is a form of PRI agility of different PRIs radar pulses used by advanced multifunction modern radar 
system for prevention of eclipsed received signal and protection against electronic counter measures (Wiley, 
2006). Some of the current trends related to this type of signal are the examination of its impact on the overall 
blind speed of the pulsed Doppler - land based radar system (Sedivy, 2013) and its classification using smoothed 
instantaneous power (Ahmad et al., 2015). 

One of the ways of achieving LPI is by using different carrier frequency for different pulses in the radar 
signal in order to reduce the probability of detection (Pace, 2009), that is frequency hopping. Recent trends 
involving the usage of this radar signal include MIMO radar ambiguity analysis of frequency hopping pulse 
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waveforms (Sharma et al., 2014) and design of cost-efficient frequency hopping radar waveform for range and 
Doppler estimation (Nuss et al., 2016). Agile pulsed radar signal is a hybrid signal of PRI modulated signal and 
frequency hopping signal. The time-plot of these radar signals discussed is presented in Figure 1 based on a 
designed radar signals generation algorithm in this paper. 

 
Figure 1. The time plots for airborne radar signals 

Firstly, the plot presented in Figure 1 is for illustration and comparison purposes as PRI in the real world 
is much higher in order to obtain a longer unambiguous range (Skolnik, 2008). Each of the blue lines shown in 
Figure 1 depicts a sinusoidal modulation during the PW with its frequency depending on the desired signal. It is 
seen that for the simple pulsed radar signal of Figure 1; the sinusoid is similar (due to same colour shade) and 
the time between them is constant depicting a constant time and frequency parameters. As for the PRI 
modulated, the sinusoid is similar but the time between them is different indicating a constant frequency but 
changing PRI parameter. The sinusoid is different for the frequency hopping signal but time between them is 
constant and therefore indicating the opposite of the PRI modulated signal. The agile pulsed signal has different 
sinusoid and different time in between them indicating the changing time and frequency parameter. The 
traditional Fast Fourier Transform (FFT) can give the frequency parameters but not when they occur and how 
many times they occur for the duration of the observation. This is what led to the development of the time-
frequency distribution (TFD) capable of obtaining the joint time-frequency representation (Boashash, 2016). 

3. Methodology  

Time-frequency distribution is a way of representing the energy distribution of a signal over the time-frequency 
domain. The short time Fourier transform (STFT) was used as the TFD in this paper due to its low 
computational complexity. It is the oldest TFD of the classical Fourier transform origin that uses sliding window 
to localise the content of the signal in the joint time frequency domain (Gabor, 1946). It is mathematically given 
in (1). 

𝐹𝑧
𝑤(t, f) = Ft→f{z(τ)w(τ − t)}        (1) 

where, 𝐹𝑧
𝑤 is the STFT, Ft→f { . . } denotes taking Fourier transform of the expression in the bracket, w(τ) is the 

sliding window time, z(τ) is the analytic version of the signal (s(τ)) and τ is the arbitral time parameter for the 
Fourier transformation. Time-frequency signal analysis requires the use of the analytic signal which will have 
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neither any aliasing effect nor frequency artefacts and can easily be obtained using Hilbert transform (Boashash, 
1998). The square magnitude of the STFT was used for the analysis in order to reduce the effect of noise. A 
graphical interpretation of this STFT is given in Figure 2 for the agile pulsed radar signal presented in Figure 1. 
The agile pulsed is selected due to its varying time and frequency characteristics and hence would represent the 
other remaining signals. 

 
Figure 2. Joint time-frequency plot of an agile pulsed radar signal 

It is clearly seen from the contour plot of Figure 2 that changing time and frequency parameter for an agile 
pulsed radar signal was correctly captured by the STFT. The power from the STFT was obtained in Figure 2 
from the internal line where higher power was recorded for lines closed to the centre. The other three remaining 
test signals were captured accurately by this STFT. In order to estimate time and frequency parameter 
respectively, the IP and IF were obtained from the TFR (such as that of Figure 2) through (2) and (3) respectively. 

𝑃𝑖(𝑡) = max(𝐹𝑧
𝑤(t, f)) ,          (2) 

𝑓𝑖(𝑡) = max
𝑓

(𝐹𝑧
𝑤(t, f)),           (3) 

where, 𝐹𝑧
𝑤is the obtained STFT representation.  

The IP and IF reduces the TFR of three dimensions of power, frequency and time to two dimensions of 
power and time for IP and frequency and time for IF for easier signal processing. The IP depicts the maximum 
power based on the search along the frequency axis while IF corresponds to the frequency location of this 
maximum power along this search. Hence the only difference between the equations (2) and (3) is ‘f’ below the 
max to indicate frequency location. 

The time parameters; PW, 1st and 2nd PRI (PRI1 and PRI2) are gotten from IP estimation using a basic 
algorithm formed from common loop statements based on a chosen threshold. Twelve and half percentile 
threshold was used in this work in order to cater for the unconventional signals of frequency hopping and agile 
pulsed. The frequency parameters; first and second carrier frequency (F1 and F2) were gotten from the IF simply 
by finding the average sample points on the frequency axis during the corresponding obtained PW time from 
the IP estimation.  

4. Results and Discussion 

For analysis of the received signals, it was assumed that the signal was de-interleaved and down converted to 
achieve a current standard sampling frequency of 100 MHz based on Agilent P-Series Power meters for radar 
signal surveillance (Agilent Technologies, 2014). For the frequency hopping signals, hopping of two frequencies 
was considered with each pulse containing different frequency while for the PRI modulated signal; PRI of two 
intervals and two positions were considered. The agile pulse considered was like a combination of the two signals 
as already stated. For performance analysis, the noise environment was modelled AWGN. This noise is very 
common and suitable for microwave communications environment like radar telecommunications where worst 
case scenario is assumed (Ziemer & Peterson, 2001). 
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The classification performance was done through a Monte Carlo simulation setup whereby two loops 
involving signal-to-noise ratio (SNR) and iteration controls were used. A standard iteration of 100 loops for each 
SNR was used in this work while the formula used for the SNR (in decibel) is given in (4). 

𝑆𝑁𝑅(𝑑𝐵) = 10 log
𝑃𝑠

𝑃𝑛
,          (4) 

where: 𝑃𝑠 is the signal power and 𝑃𝑛 is the noise power.  

The table of parameters for the test radar signals used in this work is shown in Table 1. 

Table 1. Test airborne radar signals 

Radar Signal Type Agility Status Time Parameters 

(PW =1µs) 

Frequency Parameters 

(Fs=100MHz) 

PRP1 PRP2 F1 F2 

Simple Pulsed None 40µs 40µs 10MHz 10MHz 

PRI Modulated Time only 40µs 100µs 10MHz 10MHz 

Frequency Hopping Frequency only 40µs 40µs 10MHz 20MHz 

Agile Pulsed Time and Frequency 40µs 100µs 10MHz 20MHz 

 

PW of 1µs from Table 1 was used due to lack of sophisticated intra pulse modulation (like linear frequency 
and phase shift keying modulations) (Wiley, 2006) while PRI of 40µs and 100µs corresponds to small and 
medium range of 6Km and 15Km respectively (Stimson, 1998). Carrier frequencies presented in Table 1 were 
selected within the Nyquist sampling theory (i.e. carrier frequencies must be less than or equal to half the 
sampling frequency to avoid aliasing) (Shenoi, 2006). 

A rule-based classifier was designed based on the changing four parameter inputs (PRI1, PRI2, F1 and F2) 
in order to obtain correct classification accuracy with a 10% error allowance which gives an output based on five 
possible outcomes. Summary of this classifier is given in the Table 2. 

Table 2. Classifier design 

Parameter Limits Code No Radar Signal 

Time Limit Frequency Limit 

PRI1min≤  PRI2 ≤  PRI1max F1max  ≤  F2  ≤ F1max 1 Simple Pulsed 

PRI1max <  PRI2 F1max  ≤  F2  ≤ F1max 2 PRI Modulated 

PRI1max ≤  PRI2 ≤  PRI1max F1max <  F2 3 Frequency Hopping 

PRI1max <  PRI2 F1max<  F2 4 Agile Pulsed 

Else Else 5 Unknown Signal 

 

where,  

PRI1min =  PRI1 –  0.1 ∗ PRI1        (5) 

PRI1max =  PRI1 +  0.1 ∗ PRI1         (6) 

 F1min =  F1 –  0.1 ∗ F1         (7) 

F1max =  F1 +  0.1 ∗ F1           (8) 

Equations (5) - (8) gives the mathematical definitions for the limits presented in Table 2 in line with the 
earlier mentioned 10% (0.1) error allowance. A radar signal must meet both the time and frequency parameter 
limits as defined in Table 2 to meet the classification requirements. The code no is the equivalent number 
representation of the radar signal in MATLAB due to the fact that MATLAB doesn’t recognize alphabet 
classifications based on this classifier construct. Hence, POCI of each signal was obtained after generation of 
test signals and addition of AWGN for SNR range of -18dB to 17dB.  

The POCI is given by the formula in (9). 

𝑃𝑂𝐶𝐼 (%)  =  
𝑁𝐶𝐶

𝑁𝑇𝐶
 ∗ 100%         (9) 

where, 𝑁𝐶𝐶 is number of correct classifications and 𝑁𝑇𝐶 is the number of total classifications (equivalent to the 
standard number of 100 iterations).  

The obtained POCI for the test signals considered in this paper is given in the Table 3. 
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Table 3. Monte Carlo Simulation Results for POCI 

SNR (dB) Simple Pulsed PRI Modulated Frequency Hopping Agile Pulsed 

-18 5 2 60 35 

-17 1 10 51 56 

-16 0 40 16 89 

-15 3 44 25 93 

-14 30 60 77 99 

-13 43 46 94 99 

-12 50 66 95 100 

-11 48 69 100 100 

-10 68 75 100 100 

-9 64 69 100 100 

-8 66 84 100 100 

-7 68 83 100 100 

-6 86 87 100 100 

-5 89 96 100 100 

-4 86 98 100 100 

-3 94 99 100 100 

-2 93 99 100 100 

-1 98 100 100 100 

0 99 100 100 100 

1 99 100 100 100 

2 100 100 100 100 

3 100 100 100 100 

4 100 100 100 100 

5 100 100 100 100 

6 100 100 100 100 

7 100 100 100 100 

8 100 100 100 100 

9 100 100 100 100 

10 100 100 100 100 

11 100 100 100 100 

12 100 100 100 100 

13 100 100 100 100 

14 100 100 100 100 

15 100 100 100 100 

16 100 100 100 100 

17 100 100 100 100 

 

The minimum SNR required for classification accuracy of 99% from Table 3 is 0dB, -2dB, -11dB, -13dB 
for simple pulsed, PRI modulated, frequency hopping and agile pulsed radar signals respectively. The difference 
in POCI can be attributed to the different time and frequency characteristics in each signal and limits set by the 
classifier in order to achieve correct classifications. Signals with upper and lower limits took higher SNR to 
achieve POCI of 99% even more so when these limits were present in both time and frequency parameters. As 
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such agile pulsed radar signal achieved perfect identification accuracy at minimum SNR of -12dB while a 
difference of 14dB was observed for the worst case scenario for the simple pulsed radar signal to achieving 
similar feat. A graphical representation of Table 3 is shown in Figure 3 for further discussion and better result 
presentation. 

 

 
Figure 3. Monte Carlo Simulation Results for POCI of Radar Signals 

 

Two main points were further observed and deduced from Figure 3. Firstly, the slight zigzag nature of 
classification results before constant POCI; which is attributed to random characteristics of AWGN model. 
Secondly, the minimum SNR of 0dB for classification results is further ascertained for which POCI of 99% was 
obtained irrespective on the input signal within the scope of this work. 

5. Conclusion 

This paper described an agile analysis algorithm based on STFT for accurate classification of any intercepted 
airborne radar signal based on varying pulse characteristics. The signal may be of constant time and frequency 
parameters (simple pulsed), varying time parameter only (PRI modulated), varying frequency parameter only 
(frequency hopping) or varying time and frequency parameters (agile pulsed).  Monte Carlo simulation set up for 
signal identification was carried out in the presence of AWGN within SNR range of -18dB to 17dB in order to 
determine the performance of the methodology designed and adopted in this paper. As a result of this simulation 
setup, a relationship was achieved between POCI and the SNR range. 

It was established that the presence of upper or lower limits or both in the classification rules affected the 
POCI result. As such, identification of agile pulsed signal performed best with the presence of just lower limits 
in both time and frequency, followed by frequency hopping signal due to presence of both limits in its time with 
having just lower limit in frequency. The next was PRI modulated with the presence of lower limit in time but 
both limits in frequency with simple pulsed performing poorest due to having both limits in time and frequency. 
However, irrespective of intercepted radar signal, the results obtained in this paper indicated its correct 
identification at a good SNR range of equal to or greater than 0dB based on the designed algorithm. 

It is therefore seen that the designed algorithm used in this paper may be deployed in the field of EW for 
aerial battle and electronic reconnaissance where intercepted/captured radar signal may be analysed to determine 
its pulse changing characteristics. These analyses will also provide further insight into the intention of the 
intercepted radar emitter where radar signals of constant time and frequency parameters are generally non-hostile 
while further investigation would have to be carried out for those of non-constant time and frequency 
parameters. The developed algorithm can also form an essential part of an electronic counter system capable of 
reducing the effectiveness of weapon guidance devices through counter effective measures such as jamming 
based on the correct signal identification. 
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