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This study carried out an assessment on the impact of faults on bus stability
along the Benin-lkejaWest-Aiyede-Oshogbo-Benin (BIAOB) 330kV island
network. The sensitivity of BIAOB as a ring network on the Nigerian grid
aroused the interest behind its choice for this study. The network parameters
were collated from the National Control Centre, Oshogbo and the network was
modeled on the MATLAB 2015 environment using the obtained data. A high
reactive power flow was observed in all the buses while the lowest voltage

Keywords: profile was observed on the Line-Line-Line-Ground (L-L-L-G) simulated in
BUs bus 1. This is an indication that symmetrical faults have the greatest impact on
Fault the network. Further results showed that the BIAOB network has a better
| voltage profile when compared with other radial network from existing
sland mesh network . . .

Nigerian grid literature. The paper concluded by recommending the closure of more radial

o network on the grid in order to improve its performance.
Power stability
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1. Introduction

The impact of faults on transmission network is a function of its stability at any point in time. Weak
transmission grid can therefore be a function of poor stability. Whereas, this may be a global issue;
however, studies have shown that it is more pronounced in sub-Saharan Africa due to the increasing
stressed condition to the grid is operated [1]-[3]. A major significance of faults along power network is
its impact on the network as it often leads to interruption. If adequate measures are not taken to clear
these faults in the shortest possible time, then, it could lead to a total collapse of the network [1]. In that
wise, it becomes a keen responsibility for operators of the network to continually monitor and guarantee
effective system stability around the clock [4]. As it were, the system is dynamic in nature and continues
to change every second due to varying loads connected across it. Based on this, a round-the-clock
assessment of the networks’ dynamics remains essential.

One major problem that could lead to poor stability of a network is deficiencies in power generation.

In this case, the system is forced to operate under an increasing stressed condition due to the large
number of customers it is expected to feed. The results of this forceful operation most times are
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manifested in the form of frequency violations, voltage fluctuations, overcurrent etc. [5]. Fault analysis
can either be clustered as either symmetrical or unsymmetrical [6]-[7]. The rate of occurrences of these
faults is 5% for symmetrical fault, 15% for Line-Line (L-L) and Line-Line-Ground (L-L-G) faults and
80% for Line-Ground (L-G) fault [8]. Unexpected changes of load may be due to fast switching
operations or sudden faults followed by tripping of load or circuit breaker [9]. A three phase AC power
system operating under normal condition has magnitude of both current and voltage equally distributed
across each phase. However, fault may occur to upset this situation [6].

The Nigerian transmission network is presently characterized by several constraints, which include
ageing of transmission line, long transmission line lengths, and ineffective redundancy [10]-[12]. Due
to the liberalization of the Nigerian Power Sector, the transmission network is expected to beef up its
operation so that it can meet up with the speed of the generation sector concerning wheeling of power
to customers at all times. This paper, therefore, presents the assessment and numerical impact of
symmetrical, unsymmetrical faults and buses stability along BIOAB power network to determine the
level of violations key parameters along the line.

2. Related Review on Genetic Algorithm Applications

The transmission network in Nigeria can presently wheel about 10000MW of power however, the
available generated capacity is within 5000-6000MW. This results in short fall of supply to the
consumers and customers of the product. As presented in Fig. 1, the network is characterized by more
radial and fewer mesh structures. Additionally, the figure shows the level of sensitivity of the Benin
bus being that it connects the Northern, Southern, Eastern and Western part of the country. Some form
of redundancy is therefore envisaged across the network in order to relieve the Benin bus of its presently
stressed conditions.

In [13] a review on power flow study on the Nigerian grid was carried out. The review results
identified some factors as key parameters that must be given attention to enhanced service delivery.
These parameters include but not limited to stability, maintenance, compensation etc. However, the
effect of an island fault on the network was not discussed. In [14] a research on an Island network along
the secondary transmission network in Nigeria was done. The study used the Kaduna 132/33kV network
as a case study. Results presented in the study showed a violation of voltage profile etc., compensation
of the network was therefore, proposed. An assessment of sectionalized network along the 330kV
network in Nigeria was carried out by. The network was modeled using live transmission tools on the
MATLAB environment. Available results from the study emphasized on the need for upgrading the
network to a double circuit if an effective quality of service is to be achieved. Furthermore, the study
submitted that if appropriate policies on right-of-way for transmission network are not well defined by
the appropriate authority, then, upgrading any island network may be a daunting task. Losses
determination on the 132/33kV Maryland transmission network, Nigeria was carried out in [15]. The
network was modeled on the Electrical Transient Analyzer Program (ETAP) environment. The
operating condition of the network was found to be abnormal; therefore, some level of compensation
was carried out to improve the affected buses.

In [17], the effect of loss of line along the Enugu 132/33 network using MATPOWER 5.0 was
carried out. The buses with violated voltage profile were identified and suggestions were raised on how
to go about concerning their improvement. The study recommended the use of more ring network other
than radial network which characterizes the network. A research on the sizing and placement of
Distribute Generator (DG) along the Nigerian grid was done by [18]. A reduction in losses and
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Fig. 1 One-line diagram of Nigerian 330-kV Transmission Network [16]
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improvement on voltage was achieved. The result obtained is an indication of the effectiveness of the
method used. According to [19], for the grid to function properly given its present state, then, the
integration of FACTS devices across the network is necessary. In [20], the authors undertook a study
on Power Flow study on the 220kV Maharashtra Power Network using Newton-Raphson (N-R)
algorithm on MATLAB. The study suggested new ways of voltage profile improvement by replacing
single circuit lines with double circuit, tap changing transformers, compensation of reactive power etc.
It has therefore been established from literature that the Nigerian network needs compensation at all
levels. Therefore, more studies on island network become pertinent in order to establish how their
operations or mal-operations affect a local network or community [21].

In this study, an island radial network is presented in order to determine the key parameters and their
level of violations if any using the BIOAB network which is a strategic one due to its criticality and
sensitivity. Summarily, this paper attempts to solve the problem raised through the identification of grey
areas in the network.

3. Methodology

The equivalent circuit of the network was modeled using the SIMPOWER tool on the MATLAB
2015 environment as presented in Fig. 2. The network parameters such as impedance, voltage, power
and loads at the various buses of the network were fed into the model and simulation carried out. Four
(4) generating plants; 1320 MVA, 1930MVA, 600MVA and 420MVA operating at a line-to-line rating
voltage of 13.8 kV were also modeled. Plants 1 and 2 are connected to Benin Transmitting Station
(BTS) while plants 3 and 4 are connected to lkeja-West Transmitting Station (ITS) respectively. The
reference power for the plants was modeled using Eq. (1), while the data for the plants and line
parameters are presented in Table 1.

EPA
Pref = EprC 1)

Given that: EPA is the equivalent plant availability and EPC is the equivalent plant capacity
3.1. Steady-State Stability

The characteristics of the voltage, real power and reactive power will be determined in order to get
the normal operating condition of the network under steady state condition. From the Simulink
modeling presented in Fig. 1, it can be observed that the model was fed via the four generating plants
with equivalent power capacity of 1320MW, 1930MW, 600MW and 420MW respectively. Because
all the buses are connected in parallel each plant can be connected to any of the four buses. The model
simulation attained its steady state in 5s, at which the best overview of the waveform and a realistic per
unit data were obtained, as presented in Table 3. In Table 2, the line data from circuit under
consideration was presented while Fig. 2 represents the Simulink model of the network.

3.2. Dynamic-State Stability

The dynamic state stability was carried out by setting the fault breaker into On-mode to simulate
different fault conditions along BIAOB. The following faults L-L, L-G, L-L-G, L-L-L and L-L-L-G
were simulated. The simulation time was set to 15s in order to get the best overview of the waveform.
Based on the mathematical solver used (ode23mod stiff/trapezoidal), the 15s facilitated to obtain the
best overview of the power system. This is because; anything less will not yield the anticipated result
before the fault is cleared by the circuit breakers.
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Fig. 2 MATLAB/Simulink model of Benin, Ikeja-West, Aiyede-Oshogbo and Benin
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Table 1 Plants data

Identity Power Plant EPC Terminal Voltage EPA (Pref.), Initial mechanical power
(MW) (kV) (MW) (p.u.)
Plant 1 Egbin Plant 1320 13.8 200 0.1515
Plant 2 Sapele Plant 1930 13.8 455 0.23573
Plant 3 Omotosho Plant 600 13.8 100 0.66667
Plant 4 Papalanto Plant 420 13.8 80 0.190476
Table 2 Line data from circuit under consideration
From Bus To Bus Length (km) R (p.u) X (p.u)
Benin Ikeja-west 280 0.01000 0.07800
Ikeja-west Aiyede 137 0.00489 0.03820
Aiyede Oshogbo 115 0.00410 0.03500
Oshogbo Benin 251 0.00890 0.07630
Omotosho plant lkeja-west 16 0.000571 0.004
Papalanto plant Aiyede 5 0.000179 0.00125

4. Results and Discussion

The result achieved from the steady state simulation is presented in Table 3. Fig. 3 shows the steady
state waveform for the positive sequence, voltages, active power as well as the reactive power from bus
1to bus 5.
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Fig. 3 Steady state waveforms for PVVQ simulated along BIAOB
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Table 3 Simulation result for steady state

Bus No V (p.u.) P (MW) Q (MVAR) I (p.u.)
1 0.92350 31.5720 -6.6800 0.60520
2 0.92350 19.7662 9.7300 0.38497
3 0.92350 -7.2662 10.071 0.11683
4 0.92023 57.7470 -3.8860 0.68842

The steady state data obtained for positive sequence voltages as well as the real and the reactive
power showed that the simulated ring network was at its best steady state settings at 5s based on the
model. The negatives real powers in per unit (-19) were obtained from bus 1,4 and 5 in Fig. 1 and
Table 3 are not a problem because the oscillatory characterization of waveform ends at the negative x-
axis at any sampling time. For bus 1, 4 and 5, the real powers in per unit are (-19) and at bus 2 and 3
real powers in per unit are (19) respectively, as the oscillatory characterization of the waveforms for
bus 2, 3 ends at their positive x-axis at any sampling time.

The dynamic simulation at bus 1 showed a high reactive power flow of approximately 34.05 MVAR
on the L-L fault simulated along bus 1. Consequently, the lowest voltage profile of 0.207 p.u. was
observed in the L-L-L-G fault simulated in bus 4 as shown in Table 4. In Table 5, the dynamic
simulation at bus 2 is presented. A high reactive power flow of 26.84 MVAR was observed on the L-L
fault simulated along bus 1, while the lowest voltage profile of 0.4206 p.u. was recorded on the L-L-L-
G fault along bus 2. Furthermore, the dynamic simulation at Bus 3 showed a maximum voltage profile
of 0.7826PU on the L-L fault simulated in Bus 2, the highest reactive power flow of 26.886 MVAR on
the L-G fault simulated in bus 1 and the lowest active power flow of 0.018 MW on the L-L-L fault
simulated along bus 3 as presented in Table 6.

Table 4 Dynamic simulation at bus 1

Bus No V (p.u.) P (MW) Q (MVAR) I (p.u.)

Single line to line short circuit fault at bus 1

1 0.70446 36.869 34.047 0.515

2 0.77835 17.662 1.11E+00 0.72759

3 0.77835 -7.5752 19.683 0.20715

4 0.77191 57.049 -26.169 0.91603
Single line to ground short circuit fault at bus 1

1 0.75005 36.416 2.31E+01 0.26648

2 0.81503 17.431 3.8448 0.63897

3 0.81153 -6.9125 1.63E+01 0.16229

4 0.81013 55.902 -18.647 0.83347
Three lines short circuit fault at bus 1

1 1.18E-05 4.78E-03 2.80E-03 2.86

2 0.208 0.89207 3.85E+01 1.8492

3 0.208 -10.731 1.10E+00 0.5186

4 0.20724 12.554 3.95E+01 1.9992
Three lines to ground short circuit fault at bus 1

1 1.18E-05 4.75E-03 2.81E-03 2.86

2 0.20859 0.89722 3.87E+01 1.8545

3 2.09E-01 -10.47 1.05E+00 5.0442

4 0.20788 12.304 3.97E 1.9995
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Table 5 Dynamic simulation at bus 2

Bus No V (p.u.) P (MW) Q (MVAR) I (p.u.)
Single line to line short circuit fault at bus 2
1 0.73478 38.331 26.863 0.34193
2 0.70392 16.746 -7.32E+00 1.6753
3 0.70393 -7.4084 24.848 0.67746
4 0.73335 57.659 -34.822 1.0072
Single line to ground short circuit fault at bus 2
1 0.77602 36.384 1.90E+01 0.18089
2 0.76095 16.811 -3.2315 1.3516
3 0.76096 -6.9888 1.94E+01 0.51086
4 0.78375 56.53 -24.449 0.90506
Three lines short circuit fault at bus 2
1 7.35E-01 3.84E+01 2.69E+01 3.41E-01
2 0.7043 16.765 -7.30E+00 1.6622
3 0.79431 -73882 2.48E+01 0.65216
4 0.73382 57.667 -3.51E+00 0.95417
Three lines to ground short circuit fault at bus 2
1 5.38E-01 1.83E+01 6.59E+01 1.42E+00
2 0.4206 9.4006 -6.48E+00 3.381
3 4.27E-01 -8.3566 9.17E+00 1.5685
4 0.49664 39.811 -2.27E+00 1.4096
Table 6 Dynamic simulation at bus 3
Bus No V (p.u.) P (MW) Q (MVAR) I (p.u.)
Single line to line short circuit fault at bus 3
1 0.73576 38.346 26.886 0.34452
2 0.70397 16.731 -7.31E+00 0.30166
3 0.70397 -7.3664 24.826 1.3021
4 0.73477 57.658 -34.449 1.0047
Single line to ground short circuit fault at bus 3
1 0.77508 37.484 1.92E+01 0.18058
2 0.76058 16.735 -3.331 0.19755
3 0.76099 -6.9087 1.95E+01 0.97317
4 0.78266 56.521 -24.983 0.89382
Three lines short circuit fault at bus 3
1 2.03E-01 -5.20E+00 8.11E+01 2.52E+00
2 9.56E-05 -2.08E-02 -7.55E-03 1.7994
3 5.25E-05 1.87E-02 -2.26E-03 3.1452
4 1.33E-01 8.433 2.76E+01 2.1957
Three lines to ground short circuit fault at bus 3
1 2.03E-01 -5.19E+00 8.11E+01 2.52E+00
2 9.57E-05 -2.08E-02 -7.55E-03 1.7995
3 5.25E-05 1.88E-02 -2.26E-03 3.1469
4 1.33E-01 8.433 2.76E+01 2.1958

In addition, the dynamic simulation in bus 4 yielded the highest voltage profile of 0.7857 p.u., on
the L-G fault simulated along buses 2 and 3 and a high reactive power flow of 28.612 MVVAR on the
L-L fault simulated along bus 1 as presented in Table 7. The results obtained have been represented
graphically in Figs 4-7. Similarly, the highest fault current of 5.0442 p.u. at Aiyede bus, 3.381 p.u. at
Ikeja-West bus, 3.1469pu and 2.5635 at Aiyede bus respect was observed in the L-L-L-G fault
simulated into buses 1, 2, 3 and 4 respectively.
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Table 7 Dynamic simulation at Bus 4

Bus No V (p.u.) P (MW) Q (MVAR) I (p.u.)
Single line to line short circuit fault at bus 4
1 0.73293 37.93 28.612 0.36278
2 0.73777 17.24 -7.89E+00 0.18808
3 0.73777 -7.4354 27.396 0.87767
4 0.69354 57.092 -40.267 1.0916
Single line to ground short circuit fault at bus 4
1 0.77303 37.073 2.02E+01 0.18323
2 0.78573 17.108 -3.6309 0.22838
3 0.78573 -6.9544 2.21E+01 0.65611
4 0.75278 55.966 -29.09 0.94995
Three lines short circuit fault at bus 4
1 2.01E-01 6.46E+00 8.03E+01 2.49E+00
2 1.29E-01 -3.39E+00 -1.17E+01 0.66681
3 1.29E-01 3.79E-01 3.67E+01 2.5633
4 6.09E-05 0.014227 -5.05E-03 2.4781
Three lines to ground short circuit fault at bus 4
1 2.01E-01 6.47E+00 8.03E+01 2.49E+00
2 1.29E-01 -3.40E+00 -1.17E+01 0.66701
3 1.29E-01 3.79E-01 3.67E+01 2.5635
4 6.10E-05 0.0014296 -4.94E-03 2.4781
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Generally, the impact of (unsymmetrical) single line-to-ground fault simulated into all the buses had
voltage values that deviated from normal operating condition while the lowest voltage profile was
observed in the (symmetrical fault) three-phase-to-ground fault in all the buses. On a comparative
analysis with results obtained in [12], it was observed that at steady state, the voltage profile of BIAOB
was 0.9235pu as against 0.96 in the literature. The lower voltage profile recorded may not be
unconnected to the radial characteristics of the network. Furthermore, the L-L-L-G faults simulated
along BIAOB and [12] yielded low voltage profile in both cases.

5. Conclusion

The impact of symmetrical and asymmetrical fault has been studied and analyzed along Benin, Ikeja-
West, Aiyede-Oshogbo and Benin 330kV (Ring) Double Circuits power network of the Nigerian
Transmission Power Grid. The results show that there is a great impact of symmetrical fault along the
network that may lead to a partial or total black-out in the presence of fault. Therefore, the concerned
authority managing the planning and operations of the network is expected to add more mesh networks
to the grid as well as upgrading the single circuit to double circuit network across the entire country.
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