55 research outputs found

    A systematic review of dietary, nutritional, and physical activity interventions for the prevention of prostate cancer progression and mortality

    Get PDF
    PURPOSE: Given the long-term, although potentially fatal, nature of prostate cancer, there is increasing observational evidence for the reduction in disease progression and mortality through changes in lifestyle factors. METHODS: We systematically reviewed dietary, nutritional, and physical activity randomized interventions aimed at modifying prostate cancer progression and disease-specific mortality, including a detailed assessment of risk of bias and methodological quality. RESULTS: Forty-four randomized controlled trials of lifestyle interventions, with prostate cancer progression or mortality outcomes, were identified. Substantial heterogeneity of the data prevented a meta-analysis. The included trials involved 3,418 prostate cancer patients, median 64 men per trial, from 13 countries. A trial of a nutritional supplement of pomegranate seed, green tea, broccoli, and turmeric; a trial comparing flaxseed, low-fat diet, flaxseed, and low-fat diet versus usual diet; and a trial supplementing soy, lycopene, selenium, and coenzyme Q10, all demonstrated beneficial effects. These trials were also assessed as having low risk of bias and high methodological quality (as were seven other trials with no evidence of benefit). The remaining trials were either underpowered, at high or unclear risk of bias, inadequately reported, of short duration or measured surrogate outcomes of unproven relationship to mortality or disease progression, which precluded any benefits reported being reliable. CONCLUSION: Large, well-designed randomized trials with clinical endpoints are recommended for lifestyle modification interventions. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10552-015-0659-4) contains supplementary material, which is available to authorized users

    Calreticulin affects hematopoietic stem/progenitor cell fate by impacting erythroid and megakaryocytic differentiation

    Get PDF
    Calreticulin (CALR) is a chaperone protein that localizes primarily to the endoplasmic reticulum (ER) lumen where it is responsible for the control of proper folding of neo-synthesized glycoproteins and for the retention of calcium. Recently, mutations affecting exon 9 of the CALR gene have been described in approximately 40% of patients with myeloproliferative neoplasms (MPNs). Although the role of mutated CALR in the development of MPNs has begun to be clarified, there are still no data available on the function of wild-type (WT) CALR during physiological hematopoiesis. In order to shed light on the role of WT CALR during normal hematopoiesis, we performed gene silencing and overexpression experiments in Hematopoietic Stem Progenitor Cells (HSPCs). Our results showed that CALR overexpression is able to affect physiological hematopoiesis by enhancing both erythroid and megakaryocytic (MK) differentiation. In agreement with overexpression data, CALR silencing caused a significant decrease in both erythroid and MK differentiation of human HSPCs. Gene expression profiling (GEP) analysis showed that CALR is able to affect the expression of several genes involved in HSPCs differentiation towards both the erythroid and MK lineages. Moreover, GEP data also highlighted the modulation of several genes involved in ER stress response, unfolded protein response (UPR), DNA repair and of several genes already described to play a role in MPN development, such as pro-inflammatory cytokines and hematological neoplasms-related markers. Altogether, our data unraveled a new and unexpected role for CALR in the regulation of normal hematopoietic differentiation. Moreover, by showing the impact of CALR on the expression of genes involved in several biological processes already described in cellular transformation, our data strongly suggest a more complex role for CALR in MPN development that goes beyond the activation of the THPO receptor and involves ER stress response, UPR and DNA repair

    Epigenetic Immune Remodeling of Mesothelioma Cells: A New Strategy to Improve the Efficacy of Immunotherapy

    Get PDF
    Malignant pleural mesothelioma (MPM) is an aggressive malignancy with a severe progno- sis, and with a long-standing need for more effective therapeutic approaches. However, treatment with immune checkpoint inhibitors is becoming an increasingly effective strategy for MPM pa- tients. In this scenario, epigenetic modifications may negatively regulate the interplay between immune and malignant cells within the tumor microenvironment, thus contributing to the highly immunosuppressive contexture of MPM that may limit the efficacy of immunotherapy. Aiming to further improve prospectively the clinical efficacy of immunotherapeutic approaches in MPM, we investigated the immunomodulatory potential of different classes of epigenetic drugs (i.e., DNA hypomethylating agent (DHA) guadecitabine, histone deacetylase inhibitors VPA and SAHA, or EZH2 inhibitors EPZ-6438) in epithelioid, biphasic, and sarcomatoid MPM cell lines, by cytofluo- rimetric and real-time PCR analyses. We also characterized the effects of the DHA, guadecitabine, on the gene expression profiles (GEP) of the investigated MPM cell lines by the nCounter platform. Among investigated drugs, exposure of MPM cells to guadecitabine, either alone or in combination with VPA, SAHA and EPZ-6438 demonstrated to be the main driver of the induction/upregulation of immune molecules functionally crucial in host-tumor interaction (i.e., HLA class I, ICAM-1 and cancer testis antigens) in all three MPM subtypes investigated. Additionally, GEP demonstrated that treatment with guadecitabine led to the activation of genes involved in several immune-related func- tional classes mainly in the sarcomatoid subtype. Furthermore, among investigated MPM subtypes, DHA-induced CDH1 expression that contributes to restoring the epithelial phenotype was highest in sarcomatoid cells. Altogether, our results contribute to providing the rationale to develop new epigenetically-based immunotherapeutic approaches for MPM patients, potentially tailored to the specific histologic subtypes

    Role of TGF-\u3b21/miR-382-5p/SOD2 axis in the induction of oxidative stress in CD34+ cells from primary myelofibrosis

    Get PDF
    Primary myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by an excessive production of pro-inflammatory cytokines resulting in chronic inflammation and genomic instability. Besides the driver mutations in JAK2, MPL, and CALR genes, the deregulation of miRNA expression may also contribute to the pathogenesis of PMF. To this end, we recently reported the upregulation of miR-382-5p in PMF CD34+ cells. In order to unveil the mechanistic details of the role of miR-382-5p in pathogenesis of PMF, we performed gene expression profiling of CD34+ cells overexpressing miR-382-5p. Among the downregulated genes, we identified superoxide dismutase 2 (SOD2), which is a predicted target of miR-382-5p. Subsequently, we confirmed miR-382-5p/SOD2 interaction by luciferase assay and we showed that miR-382-5p overexpression in CD34+ cells causes the decrease in SOD2 activity leading to reactive oxygen species (ROS) accumulation and oxidative DNA damage. In addition, our data indicate that inhibition of miR-382-5p in PMF CD34+ cells restores SOD2 function, induces ROS disposal, and reduces DNA oxidation. Since the pro-inflammatory cytokine transforming growth factor-\u3b21 (TGF-\u3b21) is a key player in PMF pathogenesis, we further investigated the effect of TGF-\u3b21 on ROS and miR-382-5p levels. Our data showed that TGF-\u3b21 treatment enhances miR-382-5p expression and reduces SOD2 activity leading to ROS accumulation. Finally, inhibition of TGF-\u3b21 signaling in PMF CD34+ cells by galunisertib significantly reduced miR-382-5p expression and ROS accumulation and restored SOD2 activity. As a whole, this study reports that TGF-\u3b21/miR-382-5p/SOD2 axis deregulation in PMF cells is linked to ROS overproduction that may contribute to enhanced oxidative stress and inflammation. Our results suggest that galunisertib may represent an effective drug reducing abnormal oxidative stress induced by TGF-\u3b21 in PMF patients. Database linking: GEO: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103464

    CALR mutational status identifies different disease subtypes of essential thrombocythemia showing distinct expression profiles

    Get PDF
    Polycythemia vera (PV) and essential thrombocythemia (ET) are Philadelphia-negative myeloproliferative neoplasms (MPNs) characterized by erythrocytosis and thrombocytosis, respectively. Approximately 95% of PV and 50-70% of ET patients harbor the V617F mutation in the exon 14 of JAK2 gene, while about 20-30% of ET patients carry CALRins5 or CALRdel52 mutations. These ET CALR-mutated subjects show higher platelet count and lower thrombotic risk compared to JAK2-mutated patients. Here, we showed that CALR-mutated and JAK2V617F-positive CD34+ cells display different gene and miRNA expression profiles. Indeed, we highlighted several pathways differentially activated between JAK2V617F- and CALR-mutated progenitors, i.e., mTOR, MAPK/PI3K, and MYC pathways. Furthermore, we unveiled that the expression of several genes involved in DNA repair, chromatin remodeling, splicing, and chromatid cohesion are decreased in CALR-mutated cells. According to the low risk of thrombosis in CALR-mutated patients, we also found the downregulation of several genes involved in thrombin signaling and platelet activation. As a whole, these data support the model that CALR-mutated ET could be considered as a distinct disease entity from JAK2V617F-positive MPNs and may provide the molecular basis supporting the different clinical features of these patients

    A typology of employee explanations of misbehaviour: an analysis of unfair dismissal cases

    Get PDF
    This article investigates an aspect of employee misbehaviour research that has received limited attention: the explanations employees provide for their behaviour. In Australia, employees dismissed for inappropriate behaviour may be able to pursue an unfair dismissal claim. To progress our understanding of employee misbehaviour, this research examines the explanations that employees provide to defend their behaviour at unfair dismissal hearings before the Australian Industrial Relations Commission. In this investigation, organizational behaviour theories of cognitive dissonance and organizational justice, and criminal sociology theory of neutralization, underpin the contention that employees’ explanations of their behaviour may reflect rationalizations of their behaviour that may differ from actual events. This article presents the ‘employee explanation model’, a conceptual framework categorizing the range of rationale employees provide to their employer. The model identifies three domains of rationalization: workplace related; personal-inside; and personal-outside. These domains may or may not operate independently, with mutual occurrence demanding the employer interpret and manage a ‘conflated’ rationale. This model further develops the description of organizational misbehaviour contained in Vardi and Weitz’s (2004) general framework
    corecore