33 research outputs found

    Wild Ideas: Sessions in Teaching Astronomy Courses

    Get PDF
    A new technique of teaching astronomy courses for science and non-science majors, so called personalized wild ideas sessions, is proposed. The brainstorming approach was developed and applied for teaching astronomy courses at ERAU, Eastern Region over the last 3 years. This technique represents an efficient and fun way to learn basic astronomical concepts and methods through a student\u27s involvement in generating \u27wild ideas about a given astronomical fact or set of facts, their analysis and verification. Basic elements of the technique and one sample session are described

    Understanding the Duration of Solar and Stellar Flares at Various Wavelengths

    Full text link
    Recent irradiance measurements from numerous heliophysics and astrophysics missions including SDO, GOES, Kepler, TESS, Chandra, XMM-Newton, and NICER have provided critical input in understanding the physics of the most powerful transient events on the Sun and magnetically active stars, solar and stellar flares. The light curves of flare events from the Sun and stars show remarkably similar shapes, typically with a sharp rise and protracted decay phase. The duration of solar and stellar flares has been found to be correlated with the intensity of the event in some wavelengths, such as white light, but not in other wavelengths, such as soft X-rays, but it is not evident why this is the case. In this study, we use a radiative hydrodynamics code to examine factors affecting the duration of flare emission at various wavelengths. The duration of a light curve depends on the temperature of the plasma, the height in the atmosphere at which the emission forms, and the relative importance of cooling due to radiation, thermal conduction, and enthalpy flux. We find that there is a clear distinction between emission that forms low in the atmosphere and responds directly to heating, and emission that forms in the corona, indirectly responding to heating-induced chromospheric evaporation, a facet of the Neupert effect. We discuss the implications of our results to a wide range of flare energies.Comment: Submitted to ApJ. Comments and criticisms are welcomed

    Atmospheric Beacons of Life from Exoplanets Around G and K Stars

    Get PDF
    The current explosion in detection and characterization of thousands of extrasolar planets from the Kepler mission, the Hubble Space Telescope, and large ground-based telescopes opens a new era in searches for Earth-analog exoplanets with conditions suitable for sustaining life. As more Earth-sized exoplanets are detected in the near future, we will soon have an opportunity to identify habitable worlds. Which atmospheric biosignature gases from habitable planets can be detected with our current capabilities? The detection of the common biosignatures from nitrogen-oxygen rich terrestrial-type exoplanets including molecular oxygen (O2), ozone (O3), water vapor (H2O), carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) requires days of integration time with largest space telescopes, and thus are very challenging for current instruments. In this paper we propose to use the powerful emission from rotational-vibrational bands of nitric oxide, hydroxyl and molecular oxygen as signatures of nitrogen, oxygen, and water rich atmospheres of terrestrial type exoplanets highlighted by the magnetic activity from young G and K main-sequence stars. The signals from these fundamental chemical prerequisites of life we call atmospheric beacons of life create a unique opportunity to perform direct imaging observations of Earth-sized exoplanets with high signal-to-noise and low spectral resolution with the upcoming NASA missions.Comment: 9 pages, published online in Nature Scientific Reports, November 2, 201

    Reconstructing the XUV Spectra of Active Sun-like Stars Using Solar Scaling Relations with Magnetic Flux

    Full text link
    Kepler Space Telescope and Transiting Exoplanet Survey Satellite unveiled that Sun-like stars frequently host exoplanets. These exoplanets are subject to fluxes of ionizing radiation in the form of X-ray and extreme-ultraviolet (EUV) radiation that may cause changes in their atmospheric dynamics and chemistry. While X-ray fluxes can be observed directly, EUV fluxes cannot be observed because of severe interstellar medium absorption. Here, we present a new empirical method to estimate the whole stellar XUV (X-ray plus EUV) and FUV spectra as a function of total unsigned magnetic fluxes of stars. The response of the solar XUV and FUV spectrum (0.1-180 nm) to the solar total unsigned magnetic flux is investigated by using the long-term Sun-as-a-star dataset over 10 yrs, and the power-law relation is obtained for each wavelength with a spectral resolution of 0.1-1 nm. We applied the scaling relations to active young Sun-like stars (G-dwarfs), EK Dra (G1.5V), π1\pi^1 Uma (G1.5V) and κ1\kappa^1 Ceti (G5V), and found that the observed spectra (except for the unobservable longward EUV wavelength) are roughly consistent with the extension of the derived power-law relations with errors of an order of magnitude. This suggests that our model is a valuable method to derive the XUV/FUV fluxes of Sun-like stars including the EUV band mostly absorbed at wavelengths longward of 36 nm. We also discuss differences between the solar extensions and stellar observations at the wavelength in the 2-30 nm band and concluded that simultaneous observations of magnetic and XUV/FUV fluxes are necessary for further validations.Comment: 29 pages, 10 figures, 8 tables. Accepted for publication in The Astrophysical Journa
    corecore