62 research outputs found

    Prognostic value of routine laboratory variables in prediction of breast cancer recurrence.

    Get PDF
    The prognostic value of routine laboratory variables in breast cancer has been largely overlooked. Based on laboratory tests commonly performed in clinical practice, we aimed to develop a new model to predict disease free survival (DFS) after surgical removal of primary breast cancer. In a cohort of 1,596 breast cancer patients, we analyzed the associations of 33 laboratory variables with patient DFS. Based on 3 significant laboratory variables (hemoglobin, alkaline phosphatase, and international normalized ratio), together with important demographic and clinical variables, we developed a prognostic model, achieving the area under the curve of 0.79. We categorized patients into 3 risk groups according to the prognostic index developed from the final model. Compared with the patients in the low-risk group, those in the medium- and high-risk group had a significantly increased risk of recurrence with a hazard ratio (HR) of 1.75 (95% confidence interval [CI] 1.30-2.38) and 4.66 (95% CI 3.54-6.14), respectively. The results from the training set were validated in the testing set. Overall, our prognostic model incorporating readily available routine laboratory tests is powerful in identifying breast cancer patients who are at high risk of recurrence. Further study is warranted to validate its clinical application

    Numerical Simulation of the Fracture Propagation Mechanism during Supercritical Carbon Dioxide Fracturing in Shale Reservoirs

    Get PDF
    AbstractTo investigate the fracture propagation mechanism during supercritical CO2 fracturing in shale reservoirs, a numerical model was proposed based on the displacement discontinuity method. The Peng–Robinson equation was introduced to determine the variations in CO2 properties during the fracturing process. Considering natural fracture distribution in shale reservoirs, the fracture propagation mechanisms during supercritical CO2 fracturing in shale reservoirs under different horizontal stress differences and matrix permeabilities were analyzed. The influence of the proportion of CO2 preenergizing on fracture morphology was discussed. The results obtained via numerical simulation show that supercritical CO2 is beneficial to create a more complex fracture network by activating natural fractures under the same horizontal stress difference. CO2 easily penetrates into the matrix near the fracture surfaces, increasing reservoir energy. However, when the permeability of shale reservoirs exceeds 0.04×10−3 μm2, substantial filtration of CO2 into the reservoir matrix occurs near the well bore, limiting the activation of natural fractures around the fracture tip. A higher proportion of CO2 preenergizing during fracturing is conducive to improve the fracture complexity while reducing the fracture aperture

    Immune-checkpoint protein VISTA in allergic, autoimmune disease and transplant rejection

    Get PDF
    Negative checkpoint regulators (NCRs) reduce the T cell immune response against self-antigens and limit autoimmune disease development. V-domain Ig suppressor of T cell activation (VISTA), a novel immune checkpoint in the B7 family, has recently been identified as one of the NCRs. VISTA maintains T cell quiescence and peripheral tolerance. VISTA targeting has shown promising results in treating immune-related diseases, including cancer and autoimmune disease. In this review, we summarize and discuss the immunomodulatory role of VISTA, its therapeutic potential in allergic, autoimmune disease, and transplant rejection, as well as the current therapeutic antibodies, to present a new method for regulating immune responses and achieving durable tolerance for the treatment of autoimmune disease and transplantation

    Tumor-associated microglia and macrophages in glioblastoma: From basic insights to therapeutic opportunities

    Get PDF
    Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults. Currently, the standard treatment of glioblastoma includes surgery, radiotherapy, and chemotherapy. Despite aggressive treatment, the median survival is only 15 months. GBM progression and therapeutic resistance are the results of the complex interactions between tumor cells and tumor microenvironment (TME). TME consists of several different cell types, such as stromal cells, endothelial cells and immune cells. Although GBM has the immunologically “cold” characteristic with very little lymphocyte infiltration, the TME of GBM can contain more than 30% of tumor-associated microglia and macrophages (TAMs). TAMs can release cytokines and growth factors to promote tumor proliferation, survival and metastasis progression as well as inhibit the function of immune cells. Thus, TAMs are logical therapeutic targets for GBM. In this review, we discussed the characteristics and functions of the TAMs and evaluated the state of the art of TAMs-targeting strategies in GBM. This review helps to understand how TAMs promote GBM progression and summarizes the present therapeutic interventions to target TAMs. It will possibly pave the way for new immune therapeutic avenues for GBM patients

    Vitamin B12 Enhances Nerve Repair and Improves Functional Recovery After Traumatic Brain Injury by Inhibiting ER Stress-Induced Neuron Injury

    Get PDF
    Traumatic brain injury (TBI) is one of the most common causes of neurological damage in young human populations. Vitamin B12 has been reported to promote axon growth of neuronal cells after peripheral nerve injury, which is currently used for the treatment of peripheral nerve damage in the clinical trial. Thus, we hypothesized that TBI can be attenuated by vitaminB12 treatment through its beneficial role on axon regeneration after nerve injury. To confirm it, the biological function of vitaminB12 was characterized using hematoxylin and eosin (H&E) staining, Luxol fast blue (LFB) staining, western blot analysis, and immunohistochemistry staining. The results showed that the neurological functional recovery was improved in the VitaminB12-treated group after TBI, which may be due to downregulation of the endoplasmic reticulum stress-related apoptosis signaling pathway. Moreover, the microtubule stabilization, remyelination and myelin reparation were rescued by vitamin B12, which was consistent with the treatment of 4-phenylbutyric acid (4-PBA), an endoplasmic reticulum stress inhibitor. The study suggests that vitamin B12 may be useful as a novel neuroprotective drug for TBI

    Improving the Efficacy of Conventional Therapy by Adding Andrographolide Sulfonate in the Treatment of Severe Hand, Foot, and Mouth Disease: A Randomized Controlled Trial

    Get PDF
    Background. Herb-derived compound andrographolide sulfonate (called Xiyanping injection) recommended control measure for severe hand, foot, and mouth disease (HFMD) by the Ministry of Health (China) during the 2010 epidemic. However, there is a lack of good quality evidence directly comparing the efficacy of Andrographolide Sulfonate combination therapy with conventional therapy. Methods. 230 patients were randomly assigned to 7–10 days of Andrographolide Sulfonate 5–10 mg/Kg/day and conventional therapy, or conventional therapy alone. Results. The major complications occurred less often after Andrographolide Sulfonate (2.6% versus 12.1%; risk difference [RD], 0.94; 95% CI, 0.28–1.61; P=0.006). Median fever clearance times were 96 hours (CI, 80 to 126) for conventional therapy recipients and 48 hours (CI, 36 to 54) for Andrographolide Sulfonate combination-treated patients (χ2=16.57, P<0.001). The two groups did not differ in terms of HFMD-cause mortality (P=1.00) and duration of hospitalization (P=0.70). There was one death in conventional therapy group. No important adverse event was found in Andrographolide Sulfonate combination therapy group. Conclusions. The addition of Andrographolide Sulfonate to conventional therapy reduced the occurrence of major complications, fever clearance time, and the healing time of typical skin or oral mucosa lesions in children with severe HFMD

    Quantitative proteomics identification of phosphoglycerate mutase 1 as a novel therapeutic target in hepatocellular carcinoma

    Get PDF
    BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide with poor prognosis due to resistance to conventional chemotherapy and limited efficacy of radiotherapy. There is an urgent need to develop novel biomarkers for early diagnosis, as well as to identify new drug targets for therapeutic interventions. PATIENTS AND METHODS: 54 paired HCC samples and 21 normal liver tissues were obtained from West China Hospital of Sichuan University. Informed consent was obtained from all the patients or their relatives prior to analysis, and the project was approved by the Institutional Ethics Committee of Sichuan University. Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC)-based proteomics was employed to profile the differentially expressed proteins between a HepG2 human hepatoma cell line and an immortal hepatic cell line L02. Validation of PGAM1 expression was performed by semi-quantitative RT-PCR, immunoblot and immunohistochemistry using clinical samples. shRNA expressing plasmids specifically targeting PGAM1 were designed and constructed by GenePharma Corporation (Shanghai, China), and were utilized to silence expression of PGAM1 in vitro and in vivo. Cell proliferation was measured by a combination of colony formation assay and Ki67 staining. Apoptosis was examined by flow cytometry and TUNEL assay. RESULTS: A total of 63 dysregulated proteins were identified, including 51 up-regulated proteins, and 12 down-regulated proteins (over 2-fold, p < 0.01). Phosphoglycerate mutase 1 (PGAM1) was found markedly upregulated. Clinico-pathological analysis indicated that overexpression of PGAM1 was associated with 66.7% HCC, and strongly correlated with poor differentiation and decreased survival rates (p < 0.01). shRNAs-mediated repression of PGAM1 expression resulted in significant inhibition in liver cancer cell growth both in vitro and in vivo. CONCLUSION: Our studies suggested that PGAM1 plays an important role in hepatocarcinogenesis, and should be a potential diagnostic biomarker, as well as an attractive therapeutic target for hepatocellular carcinoma

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049
    corecore