124 research outputs found

    Task-related oxygen uptake and symptoms during activities of daily life in CHF patients and healthy subjects

    Get PDF
    Patients with chronic heart failure (CHF) have a significantly lower peak aerobic capacity compared to healthy subjects, and, may therefore experience more inconvenience during the performance of domestic activities of daily life (ADLs). To date, the extent to which task-related oxygen uptake, heart rate, ventilation and symptoms during the performance of ADLs in CHF patients is different than in healthy subjects remains uncertain. General demographics, pulmonary function, body composition and peak aerobic capacity were assessed in 23 CHF outpatients and 20 healthy peers. In addition, the metabolic requirement of five simple self-paced domestic ADLs was assessed using a mobile oxycon. Task-related oxygen uptake (ml/min) was similar or lower in CHF patients compared to healthy subjects. In contrast, patients with CHF performing ADLs consumed oxygen at a higher proportion of their peak aerobic capacity than healthy subjects (p < 0.05). For example, getting dressed resulted in a mean task-related oxygen uptake of 49% of peak aerobic capacity, while sweeping the floor resulted in a mean task-related oxygen uptake of 52% of peak aerobic capacity, accompanied by significantly higher Borg symptom scores for dyspnea and fatigue (p < 0.05). Patients with CHF experience use a higher proportion of their peak aerobic capacity, peak ventilation and peak heart rate during the performance of simple self-paced domestic ADL than their healthy peers. These findings represent a necessary step in improving our understanding of improving what troubles patients the most—not being able to do the things that they could when they were healthy

    Soil Microbial Responses to Elevated CO2 and O3 in a Nitrogen-Aggrading Agroecosystem

    Get PDF
    Climate change factors such as elevated atmospheric carbon dioxide (CO2) and ozone (O3) can exert significant impacts on soil microbes and the ecosystem level processes they mediate. However, the underlying mechanisms by which soil microbes respond to these environmental changes remain poorly understood. The prevailing hypothesis, which states that CO2- or O3-induced changes in carbon (C) availability dominate microbial responses, is primarily based on results from nitrogen (N)-limiting forests and grasslands. It remains largely unexplored how soil microbes respond to elevated CO2 and O3 in N-rich or N-aggrading systems, which severely hinders our ability to predict the long-term soil C dynamics in agroecosystems. Using a long-term field study conducted in a no-till wheat-soybean rotation system with open-top chambers, we showed that elevated CO2 but not O3 had a potent influence on soil microbes. Elevated CO2 (1.5×ambient) significantly increased, while O3 (1.4×ambient) reduced, aboveground (and presumably belowground) plant residue C and N inputs to soil. However, only elevated CO2 significantly affected soil microbial biomass, activities (namely heterotrophic respiration) and community composition. The enhancement of microbial biomass and activities by elevated CO2 largely occurred in the third and fourth years of the experiment and coincided with increased soil N availability, likely due to CO2-stimulation of symbiotic N2 fixation in soybean. Fungal biomass and the fungi∶bacteria ratio decreased under both ambient and elevated CO2 by the third year and also coincided with increased soil N availability; but they were significantly higher under elevated than ambient CO2. These results suggest that more attention should be directed towards assessing the impact of N availability on microbial activities and decomposition in projections of soil organic C balance in N-rich systems under future CO2 scenarios

    Unexpected removal of the most neutral cationic pharmaceutical in river waters

    Get PDF
    Contamination of surface waters by pharmaceuticals is now widespread. There are few data on their environmental behaviour, particularly for those which are cationic at typical surface water pH. As the external surfaces of bacterio-plankton cells are hydrophilic with a net negative charge, it was anticipated that bacterio-plankton in surface-waters would preferentially remove the most extensively-ionised cation at a given pH. To test this hypothesis, the persistence of four, widely-used, cationic pharmaceuticals, chloroquine, quinine, fluphenazine and levamisole, was assessed in batch microcosms, comprising water and bacterio-plankton, to which pharmaceuticals were added and incubated for 21 days. Results show that levamisole concentrations decreased by 19 % in microcosms containing bacterio-plankton, and by 13 % in a parallel microcosm containing tripeptide as a priming agent. In contrast to levamisole, concentrations of quinine, chloroquine and fluphenazine were unchanged over 21 days in microcosms containing bacterio-plankton. At the river-water pH, levamisole is 28 % cationic, while quinine is 91–98 % cationic, chloroquine 99 % cationic and fluphenazine 72–86 % cationic. Thus, the most neutral compound, levamisole, showed greatest removal, contradicting the expected bacterio-plankton preference for ionised molecules. However, levamisole was the most hydrophilic molecule, based on its octanol–water solubility coefficient (K ow). Overall, the pattern of pharmaceutical behaviour within the incubations did not reflect the relative hydrophilicity of the pharmaceuticals predicted by the octanol–water distribution coefficient, D ow, suggesting that improved predictive power, with respect to modelling bioaccumulation, may be needed to develop robust environmental risk assessments for cationic pharmaceuticals

    Climate change goes underground: effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere.

    Get PDF
    General concern about climate change has led to growing interest in the responses of terrestrial ecosystems to elevated concentrations of CO2 in the atmosphere. Experimentation during the last two to three decades using a large variety of approaches has provided sufficient information to conclude that enrichment of atmospheric CO2 may have severe impact on terrestrial ecosystems. This impact is mainly due to the changes in the organic C dynamics as a result of the effects of elevated CO2 on the primary source of organic C in soil, i.e., plant photosynthesis. As the majority of life in soil is heterotrophic and dependent on the input of plant-derived organic C, the activity and functioning of soil organisms will greatly be influenced by changes in the atmospheric CO2 concentration. In this review, we examine the current state of the art with respect to effects of elevated atmospheric CO2 on soil microbial communities, with a focus on microbial community structure. On the basis of the existing information, we conclude that the main effects of elevated atmospheric CO2 on soil microbiota occur via plant metabolism and root secretion, especially in C3 plants, thereby directly affecting the mycorrhizal, bacterial, and fungal communities in the close vicinity of the root. There is little or no direct effect on the microbial community of the bulk soil. In particular, we have explored the impact of these changes on rhizosphere interactions and ecosystem processes, including food web interactions

    Terrestrische und semiterrestrische Ökosysteme

    Get PDF

    The effects of self-explaining when learning with text or diagrams

    No full text
    Self-explaining is an effective metacognitive strategy that can help learners develop deeper understanding of the material they study. This experiment explored if the format of material (i.e., text or diagrams) influences the self-explanation effect. Twenty subjects were presented with information about the human circulatory system and prompted to self-explain; 10 received this information in text and 10 in diagrams. Results showed that students given diagrams performed significantly better on post-tests than students given text. Diagrams students also generated significantly more self-explanations that text students. Furthermore, the benefits of self-explaining were much greater in the diagrams condition. To discover why diagrams can promote the self-explanation effect, results are interpreted with reference to the multiple differences in the semantic, cognitive and affective properties of the texts and diagrams studied
    corecore