303 research outputs found

    Business Critical: Understanding a Company’s Current and Desired Stages of Corporate Responsibility Maturity

    Get PDF
    It’s been a while since the Corporate Responsibility profession took stock of its collective wisdom on where we have been, and where we are going on running businesses responsibly. Meanwhile hardly a week goes by without a helpful suggestion from the outside world on how an organisation should improve its economic value, social usefulness and environmental efficiency; and it is very easy to spot businesses that get their social, environmental and economic decisions out of balance: these organisations hit the headlines seemingly within nanoseconds. On the upside, businesses are increasingly taking an approach that builds an Environmental, Social and Governance (ESG) premium into the core economic valuation. This is achieved by those organisations which bring in a diverse set of views to inform risk and reputation management activities, and to build a research and development pipeline for the future. This is managing both the negative and the positive social, environmental and economic impacts

    Integration of New Biological and Physical Retrospective Dosimetry Methods Into EU Emergency Response Plans – Joint RENEB and EURADOS Inter-Laboratory Comparisons

    Get PDF
    RENEB, \u27Realising the European Network of Biodosimetry and Physical Retrospective Dosimetry,\u27 is a network for research and emergency response mutual assistance in biodosimetry within the EU. Within this extremely active network, a number of new dosimetry methods have recently been proposed or developed. There is a requirement to test and/or validate these candidate techniques and inter-comparison exercises are a well-established method for such validation

    An exact goodness-of-fit test based on the occupancy problems to study zero-inflation and zero-deflation in biological dosimetry data

    Get PDF
    The goal in biological dosimetry is to estimate the dose of radiation that a suspected irradiated individual has received. For that, the analysis of aberrations (most commonly dicentric chromosome aberrations) in scored cells is performed and dose response calibration curves are built. In whole body irradiation (WBI) with X- and gamma-rays, the number of aberrations in samples is properly described by the Poisson distribution, although in partial body irradiation (PBI) the excess of zeros provided by the non-irradiated cells leads, for instance, to the Zero-Inflated Poisson distribution. Different methods are used to analyse the dosimetry data taking into account the distribution of the sample. In order to test the Poisson distribution against the Zero-Inflated Poisson distribution, several asymptotic and exact methods have been proposed which are focused on the dispersion of the data. In this work, we suggest an exact test for the Poisson distribution focused on the zero-inflation of the data developed by Rao and Chakravarti (Some small sample tests of significance for a Poisson distribution. Biometrics 1956;12 : 264–82.), derived from the problems of occupancy. An approximation based on the standard Normal distribution is proposed in those cases where the computation of the exact test can be tedious. A Monte Carlo Simulation study was performed in order to estimate empirical confidence levels and powers of the exact test and other tests proposed in the literature. Different examples of applications based on in vitro data and also data recorded in several radiation accidents are presented and discussed. A Shiny application which computes the exact test and other interesting goodness-of-fit tests for the Poisson distribution is presented in order to provide them to all interested researchers

    A statistical framework for radiation dose estimation with uncertainty quantification from the γ-H2AX assay

    Get PDF
    Over the last decade, the γ–H2AX focus assay, which exploits the phosphorylation of the H2AX histone following DNA double–strand–breaks, has made considerable progress towards acceptance as a reliable biomarker for exposure to ionizing radiation. While the existing literature has convincingly demonstrated a dose–response effect, and also presented approaches to dose estimation based on appropriately defined calibration curves, a more widespread practical use is still hampered by a certain lack of discussion and agreement on the specific dose–response modelling and uncertainty quantification strategies, as well as by the unavailability of implementations. This manuscript intends to fill these gaps, by stating explicitly the statistical models and techniques required for calibration curve estimation and subsequent dose estimation. Accompanying this article, a web applet has been produced which implements the discussed methods

    Increased apoptosis and DNA double-strand breaks in the embryonic mouse brain in response to very low-dose X-rays but not 50 Hz magnetic fields

    Get PDF
    The use of X-rays for medical diagnosis is enhancing exposure to low radiation doses. Exposure to extremely low-frequency electromagnetic or magnetic fields is also increasing. Epidemiological studies show consistent associations of childhood leukaemia with exposure to magnetic fields but any causal relationship is unclear. A limitation in assessing the consequence of such exposure is the availability of sensitive assays. The embryonic neuronal stem and progenitor cell compartments are radiosensitive tissues. Using sensitive assays, we report a statistically significant increase in DNA double-strand break (DSB) formation and apoptosis in the embryonic neuronal stem cell compartment following in utero exposure to 10–200 mGy X-rays. Both endpoints show a linear response. We also show that DSB repair is delayed following exposure to doses below 50 mGy compared with 100 mGy. Thus, we demonstrate in vivo consequences of low-dose radiation. In contrast to these impacts, we did not observe any significant induction of DSBs or apoptosis following exposure to 50 Hz magnetic fields (100 or 300 µT). We conclude that any DSB induction by treatment with magnetic fields is lower than following exposure to 10 mGy X-rays. For comparison, certain procedures involving computed tomography scanning are equivalent to 1–5 mGy X-rays

    Editor's Choice – European Society for Vascular Surgery (ESVS) 2023 Clinical Practice Guidelines on Radiation Safety

    Get PDF
    Funding Information: On behalf of the Public and Community Oversight Group (PCOG) of the Health Protection Research Unit in Chemical and Radiation Threats and Hazards: Ian Wright; John Phipps; Colette Kelly; Robert Goundry; Eve Smyth; Andrew Wood; Paul Dale (also of the Scottish Environment Protection Agency). On behalf of the Society and College of Radiographers Patient Advisory Group: Lynda Johnson; Philip Plant; Michelle Carmichael – Specialist Senior Staff Nurse Guy's and St Thomas’ NHS Foundation trust.Peer reviewe

    RENEB – Running the European Network of biological dosimetry and physical retrospective dosimetry

    Get PDF
    Purpose: A European network was initiated in 2012 by 23 partners from 16 European countries with the aim to significantly increase individualized dose reconstruction in case of large-scale radiological emergency scenarios. Results: The network was built on three complementary pillars: (1) an operational basis with seven biological and physical dosimetric assays in ready-to-use mode, (2) a basis for education, training and quality assurance, and (3) a basis for further network development regarding new techniques and members. Techniques for individual dose estimation based on biological samples and/or inert personalized devices as mobile phones or smart phones were optimized to support rapid categorization of many potential victims according to the received dose to the blood or personal devices. Communication and cross-border collaboration were also standardized. To assure long-term sustainability of the network, cooperation with national and international emergency preparedness organizations was initiated and links to radiation protection and research platforms have been developed. A legal framework, based on a Memorandum of Understanding, was established and signed by 27 organizations by the end of 2015. Conclusions: RENEB is a European Network of biological and physical-retrospective dosimetry, with the capacity and capability to perform large-scale rapid individualized dose estimation. Specialized to handle large numbers of samples, RENEB is able to contribute to radiological emergency preparedness and wider large-scale research projects.European Commission 10.13039/501100000780 [GA 295513

    RENEB - Running the European Network of Biological Dosimetry and Physical Retrospective Dosimetry

    Get PDF
    Purpose: A European network was initiated in 2012 by 23 partners from 16 European countries with the aim to significantly increase individualized dose reconstruction in case of large-scale radiological emergency scenarios

    Integration of new biological and physical retrospective dosimetry methods into EU emergency response plans - joint RENEB and EURADOS inter-laboratory comparisons

    Get PDF
    Purpose: RENEB, ‘Realising the European Network of Biodosimetry and Physical Retrospective Dosimetry,’ is a network for research and emergency response mutual assistance in biodosimetry within the EU. Within this extremely active network, a number of new dosimetry methods have recently been proposed or developed. There is a requirement to test and/or validate these candidate techniques and inter-comparison exercises are a well-established method for such validation. Materials and methods: The authors present details of inter-comparisons of four such new methods: dicentric chromosome analysis including telomere and centromere staining; the gene expression assay carried out in whole blood; Raman spectroscopy on blood lymphocytes, and detection of radiation-induced thermoluminescent signals in glass screens taken from mobile phones. Results: In general the results show good agreement between the laboratories and methods within the expected levels of uncertainty, and thus demonstrate that there is a lot of potential for each of the candidate techniques. Conclusions: Further work is required before the new methods can be included within the suite of reliable dosimetry methods for use by RENEB partners and others in routine and emergency response scenarios.VII Programa Marco de Investigación y Desarrollo (VIIPM) de la Unión Europea. nº 295513European Radiation Dosimetry Group (EURADOS) de la Unión Europea. EURADOS WG1
    • …
    corecore