18 research outputs found

    High-coverage genome of the Tyrolean Iceman reveals unusually high Anatolian farmer ancestry

    Get PDF
    The Tyrolean Iceman is known as one of the oldest human glacier mummies, directly dated to 3350-3120 calibrated BCE. A previously published low-coverage genome provided novel insights into European prehistory, despite high present-day DNA contamination. Here, we generate a high-coverage genome with low contamination (15.3×) to gain further insights into the genetic history and phenotype of this individual. Contrary to previous studies, we found no detectable Steppe-related ancestry in the Iceman. Instead, he retained the highest Anatolian-farmer-related ancestry among contemporaneous European populations, indicating a rather isolated Alpine population with limited gene flow from hunter-gatherer-ancestry-related populations. Phenotypic analysis revealed that the Iceman likely had darker skin than present-day Europeans and carried risk alleles associated with male-pattern baldness, type 2 diabetes, and obesity-related metabolic syndrome. These results corroborate phenotypic observations of the preserved mummified body, such as high pigmentation of his skin and the absence of hair on his head

    Genomic transformation and social organization during the Copper Age-Bronze Age transition in southern Iberia

    Get PDF
    The emerging Bronze Age (BA) of southeastern Iberia saw marked social changes. Late Copper Age (CA) settlements were abandoned in favor of hilltop sites, and collective graves were largely replaced by single or double burials with often distinctive grave goods indirectly reflecting a hierarchical social organization, as exemplified by the BA El Argar group. We explored this transition from a genomic viewpoint by tripling the amount of data available for this period. Concomitant with the rise of El Argar starting ∼2200 cal BCE, we observe a complete turnover of Y-chromosome lineages along with the arrival of steppe-related ancestry. This pattern is consistent with a founder effect in male lineages, supported by our finding that males shared more relatives at sites than females. However, simple two-source models do not find support in some El Argar groups, suggesting additional genetic contributions from the Mediterranean that could predate the BA.This work was supported by the Max Planck Society (V.V.-M. and W.H.); European Research Council (ERC) grant 771234—PALEoRIDER (W.H.); Spanish Ministry of Economy, Industry and Competitiveness project HAR2017-85962-P (C.O., C.R.-H., M.I.F., E.C.B., C.V.-F., V.L., R.M., and R.R.); AGAUR 2017SGR1044 (C.O., C.R.-H., M.I.F., E.C.B., C.V.-F., V.L., R.M., and R.R.); ICREA Academia program (R.R.); John Templeton Foundation grant 61220 (D.R.); and Paul Allen Family Foundation (D.R.). D.R. is an Investigator of the Howard Hughes Medical Institute

    Genomic and dietary discontinuities during the Mesolithic and Neolithic in Sicily

    Get PDF
    Sicily is a key region for understanding the agricultural transition in the Mediterranean because of its central position. Here, we present genomic and stable isotopic data for 19 prehistoric Sicilians covering the Mesolithic to Bronze Age periods (10,700-4,100 yBP). We find that Early Mesolithic hunter-gatherers (HGs) from Sicily are a highly drifted lineage of the Early Holocene western European HGs, whereas Late Mesolithic HGs carry ∼20% ancestry related to northern and (south) eastern European HGs, indicating substantial gene flow. Early Neolithic farmers are genetically most similar to farmers from the Balkans and Greece, with only ∼7% of ancestry from local Mesolithic HGs. The genetic discontinuities during the Mesolithic and Early Neolithic match the changes in material culture and diet. Three outlying individuals dated to ∼8,000 yBP; however, suggest that hunter-gatherers interacted with incoming farmers at Grotta dell'Uzzo, resulting in a mixed economy and diet for a brief interlude at the Mesolithic-Neolithic transition.Funding. The Max Planck Society financed the genetic, isotopic, and radiocarbon analyses. S. Talamo has received funding from the European Research Council under the European Union’s Horizon 2020 Research and Innovation Program (grant agreement No. 803147 RESOLUTION, https://site.unibo.it/resolution-erc/en).Peer reviewe

    Effects of High Altitude and Inorganic Lead (Pb) on DNA Methylation in Andeans

    Full text link
    This dissertation explores the relationship between the environment and the epigenome. Using gene-specific and genome-wide epigenetic approaches, this project answers two main questions: 1) Is there an epigenetic contribution to high-altitude adaptation in the Andes? 2) Does inorganic lead exposure affect the epigenomes of the indigenous Quechua? Epigenetics is a study of changes to the DNA that do not change the sequence of the nucleotides, but can influence gene expression. Epigenetic modifications are mitotically, and sometimes meiotically heritable, and can be reversible. DNA methylation, histone tail modifications, and non-coding RNAs are the main epigenetic modifications. This study focuses on DNA methylation. The following findings are reported. Global LINE-1 methylation is affected by exposure to high altitude at birth and current altitude exposure. Gene-specific methylation at the high-altitude adaptive gene, EPAS1, also is affected by current altitude exposure. This is the first study to show a decrease in its methylation associated with the altitude of recruitment. Moreover, we found significant DNA methylation changes associated with the altitude of birth. We performed an epigenome-wide association study (EWAS) between the altitude of birth and DNA methylation, and found one significant position in the promoter region of NPY1R , a gene associated with pulmonary hypertension (PH), which is considered adaptive in Andeans. In addition, we identified 155 differentially methylated regions associated with hypoxic regulation, blood pressure, and pulmonary hypertension (PH). DNA methylation changes in genes associated with neurological function and metal-ion binding have been reported with lead exposure. Additionally, a positive association between hemoglobin levels and inorganic lead, the distance from mining and lead exposure, and lead levels and the number of days since the last menstruation for women are reported. These findings demonstrate that even low levels of lead exposure can have a significant effect on the epigenome. Overall, this dissertation research demonstrates that the environment, both past and present, can have a profound impact on epigenetic modifications. DNA methylation patterns can be affected by various exposures simultaneously making the study of epigenetics with regards to one specific exposure challenging. We have shown that both high-altitude hypoxia and lead are affecting the epigenome leading to changes that may be involved in adaptation to high altitude and buffering against the adverse effects of lead exposure.PHDAnthropology & Toxicology PhDUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/149898/1/ainash_1.pd

    Blood lead levels in Peruvian adults are associated with proximity to mining and DNA methylation

    Get PDF
    Background: Inorganic lead (Pb) is common in the environment, and is toxic to neurological, renal, and cardiovascular systems. Pb exposure influences the epigenome with documented effects on DNA methylation (DNAm). We assessed the impact of low levels of Pb exposure on DNAm among non-miner individuals from two locations in Peru: Lima, the capital, and Cerro de Pasco, a highland mining town, to study the effects of Pb exposure on physiological outcomes and DNAm. Methods: Pb levels were measured in whole blood (n = 305). Blood leukocyte DNAm was determined for 90 DNA samples using the Illumina MethylationEPIC chip. An epigenome-wide association study was performed to assess the relationship between Pb and DNAm. Results: Individuals from Cerro de Pasco had higher Pb than individuals from Lima (p-value = 2.00E-16). Males had higher Pb than females (p-value = 2.36E-04). Pb was positively associated with hemoglobin (p-value = 8.60E-04). In Cerro de Pasco, blood Pb decreased with the distance from the mine (p-value = 0.04), and association with soil Pb was approaching significance (p-value = 0.08). We identified differentially methylated positions (DMPs) associated with genes SOX18, ZMIZ1, and KDM1A linked to neurological function. We also found 45 differentially methylated regions (DMRs), seven of which were associated with genes involved in metal ion binding and nine to neurological function and development. Conclusions: Our results demonstrate that even low levels of Pb can have a significant impact on the body including changes to DNAm. We report associations between Pb and hemoglobin, Pb and distance from mining, and between blood and soil Pb. We also report associations between loci- and region-specific DNAm and Pb

    LINE-1 and EPAS1 DNA methylation associations with high-altitude exposure

    No full text
    Recent discoveries indicate a genetic basis for high-altitude adaptation among human groups who have resided at high altitude for millennia, including Andeans, Tibetans, and Ethiopians. Yet, genetics alone does not explain the extent of variation in altitude-adaptive phenotypes. Current and past environments may also play a role, and one way to determine the effect of the environment is through the epigenome. To characterize if Andean adaptive responses to high altitude have an epigenetic component, we analyzed DNA methylation of the promoter region of EPAS1 and LINE-1 repetitive element among 572 Quechua individuals from high- (4,388 m) and low-altitude (0 m) in Peru. Participants recruited at high altitude had lower EPAS1 DNA methylation and higher LINE-1 methylation. Altitude of birth was associated with higher LINE-1 methylation, not with EPAS1 methylation. The number of years lived at high altitude was negatively associated with EPAS1 methylation and positively associated with LINE-1 methylation. We found four one-carbon metabolism SNPs (MTHFD1 rs2236225, TYMS rs502396, FOLH1 rs202676, GLDC rs10975681) that cumulatively explained 11.29% of the variation in average LINE-1 methylation. And identified an association between LINE-1 methylation and genome-wide SNP principal component 1 that distinguishes European from Indigenous American ancestry suggesting that European admixture decreases LINE-1 methylation. Our results indicate that both current and lifetime exposure to high-altitude hypoxia have an effect on EPAS1 and LINE-1 methylation among Andean Quechua, suggesting that epigenetic modifications may play a role in high-altitude adaptation

    Genomic transformation and social organization during the Copper Age–Bronze Age transition in southern Iberia

    No full text
    The emerging Bronze Age (BA) of southeastern Iberia saw marked social changes. Late Copper Age (CA) settlements were abandoned in favor of hilltop sites, and collective graves were largely replaced by single or double burials with often distinctive grave goods indirectly reflecting a hierarchical social organization, as exemplified by the BA El Argar group. We explored this transition from a genomic viewpoint by tripling the amount of data available for this period. Concomitant with the rise of El Argar starting 2200 cal BCE, we observe a complete turnover of Y-chromosome lineages along with the arrival of steppe-related ancestry. This pattern is consistent with a founder effect in male lineages, supported by our finding that males shared more relatives at sites than females. However, simple two-source models do not find support in some El Argar groups, suggesting additional genetic contributions from the Mediterranean that could predate the BA
    corecore