18 research outputs found

    A protein-targeting strategy used to develop a selective inhibitor of the E17K point mutation in the PH domain of Akt1

    Get PDF
    Ligands that can bind selectively to proteins with single amino-acid point mutations offer the potential to detect or treat an abnormal protein in the presence of the wild type (WT). However, it is difficult to develop a selective ligand if the point mutation is not associated with an addressable location, such as a binding pocket. Here we report an all-chemical synthetic epitope-targeting strategy that we used to discover a 5-mer peptide with selectivity for the E17K-transforming point mutation in the pleckstrin homology domain of the Akt1 oncoprotein. A fragment of Akt1 that contained the E17K mutation and an I19[propargylglycine] substitution was synthesized to form an addressable synthetic epitope. Azide-presenting peptides that clicked covalently onto this alkyne-presenting epitope were selected from a library using in situ screening. One peptide exhibits a 10:1 in vitro selectivity for the oncoprotein relative to the WT, with a similar selectivity in cells. This 5-mer peptide was expanded into a larger ligand that selectively blocks the E17K Akt1 interaction with its PIP3 (phosphatidylinositol (3,4,5)-trisphosphate) substrate

    A Cocktail of Thermally Stable, Chemically Synthesized Capture Agents for the Efficient Detection of Anti-Gp41 Antibodies from Human Sera

    Get PDF
    We report on a method to improve in vitro diagnostic assays that detect immune response, with specific application to HIV-1. The inherent polyclonal diversity of the humoral immune response was addressed by using sequential in situ click chemistry to develop a cocktail of peptide-based capture agents, the components of which were raised against different, representative anti-HIV antibodies that bind to a conserved epitope of the HIV-1 envelope protein gp41. The cocktail was used to detect anti-HIV-1 antibodies from a panel of sera collected from HIV-positive patients, with improved signal-to-noise ratio relative to the gold standard commercial recombinant protein antigen. The capture agents were stable when stored as a powder for two months at temperatures close to 60°C

    Transforming a Pair of Orthogonal tRNA-aminoacyl-tRNA Synthetase from Archaea to Function in Mammalian Cells

    Get PDF
    A previously engineered Methanocaldococcus jannaschii –tyrosyl-tRNA synthetase pair orthogonal to Escherichia coli was modified to become orthogonal in mammalian cells. The resulting -tyrosyl-tRNA synthetase pair was able to suppress an amber codon in the green fluorescent protein, GFP, and in a foldon protein in mammalian cells. The methodology reported here will allow rapid transformation of the much larger collection of existing tyrosyl-tRNA synthetases that were already evolved for the incorporation of an array of over 50 unnatural amino acids into proteins in Escherichia coli into proteins in mammalian cells. Thus we will be able to introduce a large array of possibilities for protein modifications in mammalian cells

    A General Synthetic Approach for Designing Epitope Targeted Macrocyclic Peptide Ligands

    Get PDF
    We describe a general synthetic strategy for developing high-affinity peptide binders against specific epitopes of challenging protein biomarkers. The epitope of interest is synthesized as a polypeptide, with a detection biotin tag and a strategically placed azide (or alkyne) presenting amino acid. This synthetic epitope (SynEp) is incubated with a library of complementary alkyne or azide presenting peptides. Library elements that bind the SynEp in the correct orientation undergo the Huisgen cycloaddition, and are covalently linked to the SynEp. Hit peptides are tested against the full-length protein to identify the best binder. We describe development of epitope-targeted linear or macrocycle peptide ligands against 12 different diagnostic or therapeutic analytes. The general epitope targeting capability for these low molecular weight synthetic ligands enables a range of therapeutic and diagnostic applications, similar to those of monoclonal antibodies

    Rapid discovery of peptidomimetics as antibody alternatives via epitope-targeted screening

    No full text
    We report on the development of peptide-based ligands as antibody alternatives for protein recognition. In the developing world, antibody(Ab)-based rapid diagnostic tests (RDTs) are the preferred method of disease detection for their ease-of-use and low cost relative to techniques such as microscopy and PCR. However, the performance and reliability of RDTs to detect biomarkers are severely hindered by the limitations of Abs. Abs are expensive biomols. that have batch-to-batch variability, exhibit cross-reactivity, and target a single site on a protein. As a result, Abs cannot always sensitively distinguish between disease biomarkers or detect highly polymorphic proteins. Peptide-based ligands are low-cost alternatives to Abs that can be engineered to bind specific protein targets with high affinity. They can be adapted to simultaneously target multiple epitopes, distinguish between homologous structures, and detect proteins with high sequence diversity. We employ a high throughput epitope-targeted screening protocol with combinatorial peptide libraries to rapidly discover ligands for protein recognition. We apply our peptide-based ligands as biosensors towards challenging protein targets for the development of Ab-free RDTs

    The orthogonality of the <i>M. jannaschii</i> TyrRS- pair was verified on western blots probed with anti-V5 antibodies.

    No full text
    <p>Expression of full-length foldon was monitored when various tRNAs were introduced into the HEK 293T cells. Note that the tRNA mutants used in these experiments were slightly different from those depicted in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0011263#pone-0011263-g001" target="_blank">figure 1</a>.</p

    Suppression of an amber codon inserted into the GFP-encoding gene.

    No full text
    <p>(A) Full-length GFP was expressed in HEK 293T cells only in the presence of a <i>M. jannaschii</i> TyrRS- pair designed to be orthogonal to mammalian cells. (B) Western blot analysis of full-length GFP probed with anti-His antibodies.</p
    corecore