4,540 research outputs found
Stability diagrams for bursting neurons modeled by three-variable maps
We study a simple map as a minimal model of excitable cells. The map has two
fast variables which mimic the behavior of class I neurons, undergoing a
sub-critical Hopf bifurcation. Adding a third slow variable allows the system
to present bursts and other interesting biological behaviors. Bifurcation lines
which locate the excitability region are obtained for different planes in
parameter space.Comment: 7 pages, 3 figures, accepted for publicatio
Quark fragmentation functions in a diquark model for proton and hyperon production
A simple quark-diquark model for nucleon and structure is used to
calculate leading twist light-cone fragmentation functions for a quark to
inclusively decay into P or . The parameters of the model are
determined by fitting to the known deep-inelastic structure functions of the
nucleon. When evolved from the initial to the final scale, the calculated
fragmentation functions are in remarkable agreement (for ) with those
extracted from partially inclusive and experiments at high
energies. Predictions are made, using no additional parameters, for
longitudinally and transversely polarized quarks to fragment into p or
.Comment: 15 pages, latex, figures may be obtained by writing to
hafsa%png-qau%[email protected]
p p -> j j e+/- mu+/- nu nu and j j e+/- mu-/+ nu nu at O(\alpha_{em}^6) and O(\alpha_{em}^4 \alpha_s^2) for the Study of the Quartic Electroweak Gauge Boson Vertex at LHC
We analyze the potential of the CERN Large Hadron Collider (LHC) to study the
structure of quartic vector-boson interactions through the pair production of
electroweak gauge bosons via weak boson fusion q q -> q q W W. In order to
study these couplings we have performed a partonic level calculation of all
processes p p -> j j e+/- mu+/- nu nu and pp -> j j e+/- mu-/+ nu nu at the LHC
using the exact matrix elements at O(\alpha_{em}^6) and O(\alpha_{em}^4
\alpha_s^2) as well as a full simulation of the t tbar plus 0 to 2 jets
backgrounds. A complete calculation of the scattering amplitudes is necessary
not only for a correct description of the process but also to preserve all
correlations between the final state particles which can be used to enhance the
signal. Our analyses indicate that the LHC can improve by more than one order
of magnitude the bounds arising at present from indirect measurements.Comment: 26 pages, 8 figures, revised version with some typos corrected, and
some comments and references adde
SiD Letter of Intent
Letter of Intent for SiD detector concept presented to ILC IDAGLetter of intent describing SiD (Silicon Detector) for consideration by the International Linear Collider IDAG panel. This detector concept is founded on the use of silicon detectors for vertexing, tracking, and electromagnetic calorimetry. The detector has been cost-optimized as a general-purpose detector for a 500 GeV electron-positron linear collider
Probing Trilinear Gauge Boson Interactions via Single Electroweak Gauge Boson Production at the LHC
We analyze the potential of the CERN Large Hadron Collider (LHC) to study
anomalous trilinear vector-boson interactions W^+ W^- \gamma and W^+ W^- Z
through the single production of electroweak gauge bosons via the weak boson
fusion processes q q -> q q W (-> \ell^\pm \nu) and q q -> q q Z(-> \ell^+
\ell^-) with \ell = e or \mu. After a careful study of the standard model
backgrounds, we show that the single production of electroweak bosons at the
LHC can provide stringent tests on deviations of these vertices from the
standard model prediction. In particular, we show that single gauge boson
production exhibits a sensitivity to the couplings \Delta \kappa_{Z,\gamma}
similar to that attainable from the analysis of electroweak boson pair
production.Comment: 20 pages, 6 figure
Photon Structure and Quantum Fluctuation
Photon structure derives from quantum fluctuation in quantum field theory to
fermion and anti-fermion, and has been an experimentally established feature of
electrodynamics since the discovery of the positron. In hadronic physics, the
observation of factorisable photon structure is similarly a fundamental test of
the quantum field theory Quantum Chromodynamics (QCD). An overview of
measurements of hadronic photon structure in e+e- and ep interactions is
presented, and comparison made with theoretical expectation, drawing on the
essential features of photon fluctuation into quark and anti-quark in QCD.Comment: 29 pages, 15 figures, to appear in Philosophical Transactions of the
Royal Society of London (Series A: Mathematical, Physical and Engineering
Sciences
Synchronization of Coupled Nonidentical Genetic Oscillators
The study on the collective dynamics of synchronization among genetic
oscillators is essential for the understanding of the rhythmic phenomena of
living organisms at both molecular and cellular levels. Genetic oscillators are
biochemical networks, which can generally be modelled as nonlinear dynamic
systems. We show in this paper that many genetic oscillators can be transformed
into Lur'e form by exploiting the special structure of biological systems. By
using control theory approach, we provide a theoretical method for analyzing
the synchronization of coupled nonidentical genetic oscillators. Sufficient
conditions for the synchronization as well as the estimation of the bound of
the synchronization error are also obtained. To demonstrate the effectiveness
of our theoretical results, a population of genetic oscillators based on the
Goodwin model are adopted as numerical examples.Comment: 16 pages, 3 figure
- âŠ