24 research outputs found

    Melatonin Promotes Oligodendroglial Maturation of Injured White Matter in Neonatal Rats

    Get PDF
    OBJECTIVE:To investigate the effects of melatonin treatment in a rat model of white matter damage (WMD) in the developing brain. Additionally, we aim to delineate the cellular mechanisms of melatonin effect on the oligodendroglial cell lineage. METHODS:A unilateral ligation of the uterine artery in pregnant rat at the embryonic day 17 induces fetal hypoxia and subsequent growth restriction (GR) in neonatal pups. GR and control pups received a daily intra-peritoneal injection of melatonin from birth to post-natal day (P) 3. RESULTS:Melatonin administration was associated with a dramatic decrease in microglial activation and astroglial reaction compared to untreated GR pups. At P14, melatonin prevented white matter myelination defects with an increased number of mature oligodendrocytes (APC-immunoreactive) in treated GR pups. Conversely, melatonin was not found to be associated with an increased density of total oligodendrocytes (Olig2-immunoreactive), suggesting that melatonin is able to promote oligodendrocyte maturation but not proliferation. These effects appear to be melatonin-receptor dependent and were reproduced in vitro. INTERPRETATION:These data suggest that melatonin has a strong protective effect on developing damaged white matter through decreased microglial activation and oligodendroglial maturation leading to a normalization of the myelination process. Consequently, melatonin should be a considered as an effective neuroprotective candidate not only in perinatal brain damage but also in inflammatory and demyelinating diseases observed in adults

    Gray and White Matter Demyelination and Remyelination Detected with Multimodal Quantitative MRI Analysis at 11.7T in a Chronic Mouse Model of Multiple Sclerosis

    Get PDF
    International audienceMyelin is a component of the nervous system that is disrupted in multiple sclerosis, resulting in neuro-axonal degeneration. The longitudinal effect of chronic cuprizone-induced demyelination was investigated in the cerebral gray and white matter of treated mice and the spontaneous remyelination upon treatment interruption. Multimodal Magnetic Resonance Imaging and a Cryoprobe were used at 11.7T to measure signal intensity ratios, T 2 values and diffusion metrics. The results showed significant and reversible modifications in white matter and gray matter regions such as in the rostral and caudal corpus callosum, the external capsule, the cerebellar peduncles, the caudate putamen, the thalamus, and the somatosensory cortex of treated mice. T 2 and radial diffusivity metrics appeared to be more sensitive than fractional anisotropy, axial diffusivity or mean diffusivity to detect those cuprizone-induced changes. In the gray matter, only signal and T 2 metrics and not diffusion metrics were sensitive to detect any changes. Immunohistochemical qualitative assessments in the same regions confirmed demyelination and remyelination processes. These multimodal data will provide better understanding of the dynamics of cuprizone-induced de-and remyelination in white and gray matter structures, and will be the basis to test therapies in experimental models

    Generation of Oligodendrocytes and Oligodendrocyte-Conditioned Medium for Co-Culture Experiments

    No full text
    International audienceIn the central nervous system, oligodendrocytes are well-known for their role in axon myelination, that accelerates the propagation of action potentials through saltatory conduction. Moreover, an increasing number of reports suggest that oligodendrocytes interact with neurons beyond myelination, notably through the secretion of soluble factors. Here, we present a detailed protocol allowing purification of oligodendroglial lineage cells from glial cell cultures also containing astrocytes and microglial cells. The method relies on overnight shaking at 37 °C, which allows selective detachment of the overlying oligodendroglial cells and microglial cells, and the elimination of microglia by differential adhesion. We then describe the culture of oligodendrocytes and production of oligodendrocyte-conditioned medium (OCM). We also provide the kinetics of OCM treatment or oligodendrocytes addition to purified hippocampal neurons in co-culture experiments, studying oligodendrocyte-neuron interactions

    Imaging central nervous system myelin by positron emission tomography in multiple sclerosis using [methyl-¹¹C]-2-(4'-methylaminophenyl)- 6-hydroxybenzothiazole.

    No full text
    International audienceOBJECTIVE: Imaging of myelin tracts in vivo would greatly improve the monitoring of demyelinating diseases such as multiple sclerosis (MS). To date, no imaging technique specifically targets demyelination and remyelination. Recently, amyloid markers related to Congo red have been shown to bind to central nervous system (CNS) myelin. Here we questioned whether the thioflavine-T derivative 2-(4'-methylaminophenyl)-6-hydroxybenzothiazole (PIB), which also binds to amyloid plaques, could serve as a myelin marker. METHODS: PIB fixation to myelin was studied by fluorescence in the normal and dysmyelinating mouse brain, as well as in the postmortem brain of MS patients. Positron emission tomography (PET) experiments were conducted using [¹¹C]PIB in baboons and in a proof of concept clinical study in 2 MS patients. RESULTS: Applied directly on tissue sections or after intraperitoneal injection, PIB stained CNS myelin, and the decrease in the level of fixation paralleled the amount of myelin loss in a dysmyelinating mutant. In normally myelinated areas of postmortem MS brain, demyelinated and remyelinated lesions were clearly distinguishable by the differential intensity of labeling observed with PIB. PET using intravenously injected radiolabeled [¹¹C]PIB imaged CNS myelin in baboons and humans. In MS patients, the dynamic analysis of PET acquisitions allowed quantitative assessment of demyelination. INTERPRETATION: PIB could be used as an imaging marker to quantify myelin loss and repair in demyelinating diseases

    Inflammation‐driven glial alterations in the cuprizone mouse model probed with diffusion‐weighted magnetic resonance spectroscopy at 11.7 T

    Get PDF
    International audienceInflammation of brain tissue is a complex response of the immune system to the presence of toxic compounds or to cell injury, leading to a cascade of pathological processes that include glial cell activation. Noninvasive MRI markers of glial reactivity would be very useful for in vivo detection and monitoring of inflammation processes in the brain, as well as for evaluating the efficacy of personalized treatments. Due to their specific location in glial cells, myo-inositol (mIns) and choline compounds (tCho) seem to be the best candidates for probing glial-specific intra-cellular compartments. However, their concentrations quantified using conventional proton MRS are not specific for inflammation. In contrast, it has been recently suggested that mIns intra-cellular diffusion, measured using diffusion-weighted MRS (DW-MRS) in a mouse model of reactive astrocytes, could be a specific marker of astrocytic hypertrophy. In order to evaluate the specificity of both mIns and tCho diffusion to inflammation-driven glial alterations, we performed DW-MRS in a volume of interest containing the corpus callosum and surrounding tissue of cuprizone-fed mice after 6 weeks of intoxication, and evaluated the extent of astrocytic and microglial alterations using immunohistochemistry. Both mIns and tCho apparent diffusion coefficients were significantly elevated in cuprizone-fed mice compared with control mice, and histologic evaluation confirmed the presence of severe inflammation. Additionally, mIns and tCho diffusion showed, respectively, strong and moderate correlations with histological measures of astrocytic and microglial area fractions, confirming DW-MRS as a promising tool for specific detection of glial changes under pathological conditions

    An alternative mechanism of early nodal clustering and myelination onset in GABAergic neurons of the central nervous system

    No full text
    International audienceIn vertebrates, fast saltatory conduction along myelinated axons relies on the node of Ranvier. How nodes assemble on CNS neurons is not yet fully understood. We previously described that node‐like clusters can form prior to myelin deposition in hippocampal GABAergic neurons and are associated with increased conduction velocity. Here, we used a live imaging approach to characterize the intrinsic mechanisms underlying the assembly of these clusters prior to myelination. We first demonstrated that their components can partially preassemble prior to membrane targeting and determined the molecular motors involved in their trafficking. We then demonstrated the key role of the protein β2Nav for node‐like clustering initiation. We further assessed the fate of these clusters when myelination proceeds. Our results shed light on the intrinsic mechanisms involved in node‐like clustering prior to myelination and unravel a potential role of these clusters in node of Ranvier formation and in guiding myelination onset

    Transient hypothyroidism favors oligodendrocyte generation providing functional remyelination in the adult mouse brain

    No full text
    International audienceIn the adult brain, both neurons and oligodendrocytes can be generated from neural stem cells located within the Sub-Ventricular Zone (SVZ). Physiological signals regulating neuronal versus glial fate are largely unknown. Here we report that a thyroid hormone (T 3)-free window, with or without a demyelinating insult, provides a favorable environment for SVZ-derived oligodendrocyte progenitor generation. After demyelination, oligodendrocytes derived from these newly-formed progenitors provide functional remyelination, restoring normal conduction. The cellular basis for neuronal versus glial determination in progenitors involves asymmetric partitioning of EGFR and TRa1, expression of which favor glio-and neuro-genesis, respectively. Moreover, EGFR + oligodendrocyte progenitors, but not neuroblasts, express high levels of a T 3-inactivating deiodinase, Dio3. Thus, TRa absence with high levels of Dio3 provides double-pronged blockage of T 3 action during glial lineage commitment. These findings not only transform our understanding of how T 3 orchestrates adult brain lineage decisions, but also provide potential insight into demyelinating disorders

    Apoptotic induction in CNS cell cultures.

    No full text
    <p>Apoptotic immunocytochemical detection in oligodendrocyte precursor cells (OPCs, O4+ cells) and mature oligodendrocytes (MBP+ cells) in mixed CNS cell cultures of WT and Hsp70.1 KO mice under non-stimulated (left column) and LPS plus IFN-γ-stimulated (right column) culture conditions. A. Detection of apoptotic OPCs cells (O4+Casp3+ cells). The rows indicate the O4+Casp3+ cells. B. Detection of apoptotic mature oligodendrocytes (MBP+Casp3+ cells).</p
    corecore