46 research outputs found

    Multi-Analyte MS Based Investigation in Relation to the Illicit Treatment of Fish Products with Hydrogen Peroxide

    Get PDF
    Fishery products are perishable due to the action of many enzymes, both endogenous and exogenous. The latter are produced by bacteria that may contaminate the products. When fishes age, there is a massive bacteria growth that causes the appearance of off-flavor. In order to obtain “false” freshness of fishery products, an illicit treatment with hydrogen peroxide is reported to be used. Residues of hydrogen peroxide in food may be of toxicology concern. We developed two mass spectrometry based methodologies to identify and quantify molecules related to the treatment of fishes with hydrogen peroxide. With ultra-high-performance liquid chromatography–mass spectrometry (UHPLC-MS) we evaluated the concentration of trimethylamine-N-oxide (TMAO), trimethylamine (TMA), dimethylamine (DMA), and cadaverine (CAD) in fish products. After evaluating LOQ, we measured and validated the lower limits of quantification (LLOQs as first levels of calibration curves) values of 50 (TMAO), 70 (TMA), 45 (DMA), and 40 (CAD) ng/mL. A high ratio between TMAO and TMA species indicated the freshness of the food. With a GC-MS method we confirmed the illicit treatment measuring the levels of H2O2 after an analytical reaction with anisole to give 2-hydroxyanisole as a marker. This latter product was detected in the headspace of the homogenized sample with simplification of the work-up. A LLOQ of 50 ng/mL was checked and validated. When fish products were whitened and refreshed with hydrogen peroxide, the detected amount of the product 2-hydroxyanisole could be very important, (larger than 100 mg/kg). The developed analytical methods were suitable to detect the illicit management of fishery products with hydrogen peroxide; they resulted as sensitive, selective, and robust

    Characterization and Determination of Interesterification Markers (Triacylglycerol Regioisomers) in Confectionery Oils by Liquid Chromatography-Mass Spectrometry

    Get PDF
    Interesterification is an industrial transformation process aiming to change the physico-chemical properties of vegetable oils by redistributing fatty acid position within the original constituent of the triglycerides. In the confectionery industry, controlling formation degree of positional isomers is important in order to obtain fats with the desired properties. Silver ion HPLC (High Performance Liquid Chromatography) is the analytical technique usually adopted to separate triglycerides (TAGs) having different unsaturation degrees. However, separation of TAG positional isomers is a challenge when the number of double bonds is the same and the only difference is in their position within the triglyceride molecule. The TAG positional isomers involved in the present work have a structural specificity that require a separation method tailored to the needs of confectionery industry. The aim of this work was to obtain a chromatographic resolution that might allow reliable qualitative and quantitative evaluation of TAG positional isomers within reasonably rapid retention times and robust in respect of repeatability and reproducibility. The resulting analytical procedure was applied both to confectionery raw materials and final products

    Targeted and untargeted quantification of quorum sensing signalling molecules in bacterial cultures and biological samples via HPLC-TQ MS techniques

    Get PDF
    Quorum sensing (QS) is the ability of some bacteria to detect and to respond to population density through signalling molecules. QS molecules are involved in motility and cell aggregation mechanisms in diseases such as sepsis. Few biomarkers are currently available to diagnose sepsis, especially in high-risk conditions. The aim of this study was the development of new analytical methods based on liquid chromatography-mass spectrometry for the detection and quantification of QS signalling molecules, including N-acyl homoserine lactones (AHL) and hydroxyquinolones (HQ), in biofluids. Biological samples used in the study were Pseudomonas aeruginosa bacterial cultures and plasma from patients with sepsis. We developed two MS analytical methods, based on neutral loss (NL) and product ion (PI) experiments, to identify and characterize unknown AHL and HQ molecules. We then established a multiple-reaction-monitoring (MRM) method to quantify specific QS compounds. We validated the HPLC-MS-based approaches (MRM-NL-PI), and data were in accord with the validation guidelines. With the NL and PI MS-based methods, we identified and characterized 3 and 13 unknown AHL and HQ compounds, respectively, in biological samples. One of the newly found AHL molecules was C12-AHL, first quantified in Pseudomonas aeruginosa bacterial cultures. The MRM quantitation of analytes in plasma from patients with sepsis confirmed the analytical ability of MRM for the quantification of virulence factors during sepsis

    HPLC-HRMS global metabolomics approach for the diagnosis of "olive quick decline syndrome" markers in olive trees leaves

    Get PDF
    10openInternationalItalian coauthor/editorOlive quick decline syndrome (OQDS) is a multifactorial disease affecting olive plants. The onset of this economically devastating disease has been associated with a Gram-negative plant pathogen called Xylella fastidiosa (Xf). Liquid chromatography separation coupled to high-resolution mass spectrometry detection is one the most widely applied technologies in metabolomics, as it provides a blend of rapid, sensitive, and selective qualitative and quantitative analyses with the ability to identify metabolites. The purpose of this work is the development of a global metabolomics mass spectrometry assay able to identify OQDS molecular markers that could discriminate between healthy (HP) and infected (OP) olive tree leaves. Results obtained via multivariate analysis through an HPLC-ESI HRMS platform (LTQ-Orbitrap from Thermo Scientific) show a clear separation between HP and OP samples. Among the differentially expressed metabolites, 18 different organic compounds highly expressed in the OP group were annotated; results obtained by this metabolomic approach could be used as a fast and reliable method for the biochemical characterization of OQDS and to develop targeted MS approaches for OQDS detection by foliage analysisopenAsteggiano, A.; Franceschi, P.; Zorzi, M.; Aigotti, R.; Dal Bello, F.; Baldassarre, F.; Lops, F.; Carlucci, A.; Medana, C.; Ciccarella, G.Asteggiano, A.; Franceschi, P.; Zorzi, M.; Aigotti, R.; Dal Bello, F.; Baldassarre, F.; Lops, F.; Carlucci, A.; Medana, C.; Ciccarella, G
    corecore