27 research outputs found

    Evaluation of a novel real-time polymerase chain reaction assay for identifying H3 equine influenza virus in Kazakhstan

    Get PDF
    Background and Aim: Equine influenza (EI) is a highly contagious disease that causes fever and upper respiratory tract inflammation. It is caused by influenza virus A, belonging to the Orthomyxoviridae family, with subtypes H3N8 and H7N7. This study presents data on the development of a real-time polymerase chain reaction (RT-PCR) assay using TaqMan probes to detect the H3 subtype of EI virus (EIV). Materials and Methods: The evaluation of the developed RT-PCR assay involved five strains of EIV as positive controls and ten nasopharyngeal swab samples collected from horses. RNA was isolated using the GeneJet Viral DNA and RNA Purification Kit, and primers and probes were designed using the Integrated DNA Technology PrimerQuest Tool. The assay was optimized by investigating the annealing temperature, primer and probes concentrations, sensitivity, and specificity. Sequencing was performed using the Thermo Fisher 3130 Genetic Analyzer, and the evolutionary history was inferred using the Neighbor-Joining method. Results: The designed primers and probes, targeting the H3 gene, were found to be specific to the EIV. The RT-PCR assay was capable of detecting as low as 50 femtogram (f) or 3 × 103 copies of genomic RNA. No cross-reactions were observed with other respiratory viral and bacterial pathogens, indicating the high specificity of the assay. To evaluate its effectiveness, ten nasopharyngeal swab samples collected from farms in North Kazakhstan regions during disease monitoring were analyzed. The accuracy of the analysis was confirmed by comparing the results with those obtained from a commercial RT-PCR assay for EI identification. The developed RT-PCR assay exhibited high sensitivity and specificity for detecting the EIV. Conclusion: The results demonstrate that the developed RT-PCR assay is suitable for diagnosing EI. This simple, highly sensitive, and specific assay for detecting H3 EIV can be a reliable tool for diagnosing and surveilling EI. Implementing this RT-PCR assay in veterinary practice will enhance and expedite the timely response to potential outbreaks of EI, thus positively impacting the overall epizootic well-being of EI in Kazakhstan

    Genetic characterization of a new candidate hemagglutinin subtype of influenza A viruses

    Get PDF
    Avian influenza viruses (AIV) have been classified on the basis of 16 subtypes of hemagglutinin (HA) and 9 subtypes of neuraminidase. Here we describe genomic evidence for a new candidate HA subtype, nominally H19, with a large genetic distance to all previously described AIV subtypes, derived from a cloacal swab sample of a Common Pochard (Aythya ferina) in Kazakhstan, in 2008. Avian influenza monitoring in wild birds especially in migratory hotspots such as central Asia is an important approach to gain information about the circulation of known and novel influenza viruses. Genetically, the novel HA coding sequence exhibits only 68.2% nucleotide and 68.5% amino acid identity with its nearest relation in the H9 (N2) subtype. The new HA sequence should be considered in current genomic diagnostic AI assays to facilitate its detection and eventual isolation enabling further study and antigenic classification

    Exposure of wild Caspian seals (Pusa caspica) to parasites, bacterial and viral pathogens, evaluated via molecular and serological assays

    Get PDF
    Disease surveillance of marine mammal populations is essential to understand the causes of strandings, identify potential threats to animal health, and to support development of conservation strategies. Here we report the first large multi-pathogen screening of prevalence for viruses, bacteria and parasites in a sample of 177 live, healthy, wild Caspian seals (Pusa caspica), captured and released during satellite telemetry studies 2007-2017. Employing molecular and serological assays we assess prevalence of pathogens known to be of significance for marine mammal health worldwide, and evaluate the results in relation to Caspian seal health and conservation. RT-PCR, and PCR assays find evidence for infection by Canine Distemper Virus (CDV), Phocine herpes virus, phocine adenovirus and Influenza A at prevalences of 5%, 6.4%, 21.7%, and 4% respectively. The genomes of CDV isolates collected in 2008 showed 99.59% identity with the 2000 Caspian seal CDV epizootic strain. A partial coding sequence for the Us2 gene from the Caspian seal herpes virus was identical to PhHV-1 isolate PB84, previously reported from a harbor seal (Phoca vitulina), while amplicon sequences for the adenovirus polymerase gene indicated a novel strain. ELISA assays detected exposure to Influenza A (55% of tested samples), adenovirus (25%), coronavirus (6%), CDV (8%), herpes virus (94%), Toxoplasma gondii (2.6%) and heartworm (1%). Hemagglutination inhibition (HI) tests detected exposure to Influenza B at a prevalence of 20%, and Leptospira microscopic agglutination tests detected suspected exposure to Leptospira serovars in 9% of tested samples. Overall, the risks, profile and prevalence of pathogens in Caspian seals appear comparable to other wild phocid seal populations. Our results suggest Caspian seals have exposure pathways to pathogens with epizootic potential or ability to cause significant morbidity, and that disease impacts could reduce the resilience of the population to other conservation threats. Caspian seals are listed as Endangered by the International Union for Conservation of Nature (IUCN), and we recommend that resources are invested to support further surveillance programs and to understand how anthropogenic pressures may influence future disease risks. A translated version of this abstract is available in Russian and Kazakh in the Supplementary Material (Presentation 1 and Presentation 2

    The Canine Morbillivirus Strain Associated with An Epizootic in Caspian Seals Provides New Insights into the Evolutionary History of this Virus

    Get PDF
    Canine morbillivirus (canine distemper virus; CDV) is a worldwide distributed morbillivirus that causes sporadic cases and recurrent epizootics among an increasing number of wild, feral, and domestic animal species. We investigated the evolutionary history of CDV strains involved in the 1988 Lake Baikal (CDVPS88) and the 2000 Caspian Sea (CDVPC00) seal die-offs by recovery of full-length sequences from archived material using next-generation sequencing. Bayesian phylogenetic analyses indicated that CDVPC00 constitutes a novel strain in a separate clade (tentatively termed "Caspian") from the America-1 clade, which is comprised of older vaccine strains. The America-1/Caspian monophyletic group is positioned most basally with respect to other clades and is estimated to have separated from other CDV clades around 1832. Our results indicate that CDVPC00 recovered from the epizootic in the Caspian Sea in 2000 belongs to a previously undetected novel clade and constitutes the most ancestral wild-type CDV clade

    Novel avian paramyxovirus isolated from gulls in Caspian seashore in Kazakhstan.

    Get PDF
    Three isolates APMV/gull/Kazakhstan/5976/2014, APMV/gull/Kazakhstan/ 5977/2014 and APMV/gull/Kazakhstan/5979/2014, were obtained from independent samples during annual surveillance for avian influenza and paramyxoviruses in wild birds from the Caspian Sea coast in Western Kazakhstan, and were initially identified as putative paramyxoviruses on the basis of electron microscopy. Hemagglutination Inhibition Assays with antisera to nine known APMV serotypes (APMV1-9) indicated no relation to any of them. Next generation sequencing of whole genome sequences indicated the three isolates were genetically identical, and had a nucleotide structure typical for all APMVs, consisting of six genes 3'-NP-P-M-F-HN-L-5'. Phylogenetic analyses, and assessment of amino acid identities, suggested the most closely related lineages to be APMV-2, 8, 10 and 15, but the novel isolate had less than 64% identity to them and all other known avian paramyxoviruses. This value was above levels considered to generally define other APMV serotypes. Estimates of the evolutionary divergence of the nucleotide sequences of the genomes of APMVs have shown that novel Kazakhstan APMV strain was closest to APMV-2, APMV-8, APMV-10 and APMV-15, with calculated distance values of 2.057, 2.058, 2.026 and 2.286 respectively, which is above values considered to differentiate other serotypes (observed minimum was 1.108 between APMV-1 and recently isolated APMV/UPO216/Korea). Together, the data suggest that isolate APMV/gull/Kazakhstan/5976/2014 and other two should be considered as the first representative of a novel APMV-20 group, and is the first time that avian paramyxoviruses have been found infecting members of the gull family, extending the known taxonomic host range

    Table_1_Has avian influenza virus H9 originated from a bat source?.docx

    No full text
    Influenza A viruses are important pathogens that can cause diseases with high mortality in humans, animals, and birds; and wild birds are considered the primary reservoir of all subtypes in nature. After discovering the H9 influenza A viruses in bats, questions arose about their potential to serve as an additional natural reservoir and about the priority of the viral origin: Did the virus initially circulate in bats and then transmit to birds or vice versa? Influenza A viruses of the H9 subtype are of particular interest because fatal infections of humans caused by H5, H7, and H10 influenza viruses contained RNA segments from H9 viruses. Recently, a novel subtype of influenza A virus (H19) was reported and it was closely related to the H9 bat influenza A virus by its hemagglutinin structure. The genome of novel H19 has revealed a mixed characteristic genomic signature of both avian and bat influenza viruses. The time to most recent common ancestor (TMRCA) estimates have shown that the divergence time between the bat and avian H9-similar influenza virus occurred approximately at the end of the XVIII century. This article discusses the evolution and possible origin of influenza viruses of the H9 subtype isolated from bats and birds. The obtained data, along with the known data, suggest that the primary reservoir of the H9 influenza virus is wild birds, from which the virus was transmitted to bats. We hypothesize that the novel H19 could be a descendant of an intermediate influenza virus that was in the transition stage of spillover from avian to bat hosts.</p

    Table_2_Has avian influenza virus H9 originated from a bat source?.docx

    No full text
    Influenza A viruses are important pathogens that can cause diseases with high mortality in humans, animals, and birds; and wild birds are considered the primary reservoir of all subtypes in nature. After discovering the H9 influenza A viruses in bats, questions arose about their potential to serve as an additional natural reservoir and about the priority of the viral origin: Did the virus initially circulate in bats and then transmit to birds or vice versa? Influenza A viruses of the H9 subtype are of particular interest because fatal infections of humans caused by H5, H7, and H10 influenza viruses contained RNA segments from H9 viruses. Recently, a novel subtype of influenza A virus (H19) was reported and it was closely related to the H9 bat influenza A virus by its hemagglutinin structure. The genome of novel H19 has revealed a mixed characteristic genomic signature of both avian and bat influenza viruses. The time to most recent common ancestor (TMRCA) estimates have shown that the divergence time between the bat and avian H9-similar influenza virus occurred approximately at the end of the XVIII century. This article discusses the evolution and possible origin of influenza viruses of the H9 subtype isolated from bats and birds. The obtained data, along with the known data, suggest that the primary reservoir of the H9 influenza virus is wild birds, from which the virus was transmitted to bats. We hypothesize that the novel H19 could be a descendant of an intermediate influenza virus that was in the transition stage of spillover from avian to bat hosts.</p

    Has avian influenza virus H9 originated from a bat source?

    No full text
    Influenza A viruses are important pathogens that can cause diseases with high mortality in humans, animals, and birds; and wild birds are considered the primary reservoir of all subtypes in nature. After discovering the H9 influenza A viruses in bats, questions arose about their potential to serve as an additional natural reservoir and about the priority of the viral origin: Did the virus initially circulate in bats and then transmit to birds or vice versa? Influenza A viruses of the H9 subtype are of particular interest because fatal infections of humans caused by H5, H7, and H10 influenza viruses contained RNA segments from H9 viruses. Recently, a novel subtype of influenza A virus (H19) was reported and it was closely related to the H9 bat influenza A virus by its hemagglutinin structure. The genome of novel H19 has revealed a mixed characteristic genomic signature of both avian and bat influenza viruses. The time to most recent common ancestor (TMRCA) estimates have shown that the divergence time between the bat and avian H9-similar influenza virus occurred approximately at the end of the XVIII century. This article discusses the evolution and possible origin of influenza viruses of the H9 subtype isolated from bats and birds. The obtained data, along with the known data, suggest that the primary reservoir of the H9 influenza virus is wild birds, from which the virus was transmitted to bats. We hypothesize that the novel H19 could be a descendant of an intermediate influenza virus that was in the transition stage of spillover from avian to bat hosts

    Retrospective Analysis of the Equine Influenza Virus A/Equine/Kirgizia/26/1974 (H7N7) Isolated in Central Asia

    No full text
    A retrospective phylogenetic characterization of the hemagglutinin, neuraminidase and nucleoprotein genes of equine influenza virus A/equine/Kirgizia/26/1974 (H7N7) which caused an outbreak in Kirgizia (a former Soviet Union republic, now Kyrgyzstan) in 1977 was conducted. It was defined that it was closely related to the strain London/1973 isolated in Europe and it shared a maximum nucleotide sequence identity at 99% with it. This Central Asian equine influenza virus isolate did not have any specific genetic signatures and can be considered as an epizootic strain of 1974 that spread in Europe. The absence of antibodies to this subtype EI virus (EIV) in recent research confirms its disappearance as of the 1990s when the antibodies were last found in unvaccinated horses
    corecore