11 research outputs found

    Phosphate and zinc transport and signalling in plants: toward a better understanding of their homeostasis interaction

    Get PDF
    Zn and Pi are essential elements for plant growth. Current understanding of the regulation of their homeostasis interaction and signalling cross-talk is presente

    Presence of proline in salinized nutrient solution re-enforces the role of this amino acid in osmoregulation and protects lipid membrane peroxidation in Arabidopsis thaliana

    Get PDF
    Abstract Very little is known about the effect of proline addition on the accumulation of inorganic solutes (Na ) and soluble sugars in the model plant Arabidopsis thaliana. Therefore, the aim of the present study was to assess the effect of 10 mM proline (P) supply in the culture medium on water status and solute accumulation of Arabidopsis thaliana seedlings exposed to 50 mM NaCl (S). The decrease of leaf osmotic potential was more pronounced in P+S as compared to S plants, indicating that former plants were able to accumulate more compounds involved in the osmotic adjustment process. Leaf potassium concentration was reduced by 15, 21 and 25% in P, S and P+S plants respectively, as compared to the control. When compared to S or P treatments, leaf proline and soluble sugar were more accumulated under P+S treatment. Under saline conditions, exogenous proline increased leaf Na + , Ca 2+ and Mg 2+ concentrations by 27, 281 and 252%, respectively, as compared to the control. Interestingly, proline addition mitigated significantly the deleterious effects of salt on lipid membrane peroxidation. Regarding the contribution of soluble sugars to osmotic adjustment (OA), it amounted to 6% in S or P+S, plants. For proline, its contribution to OA did not exceed 3.4% under salinity (S), whereas in (P+S) treatment, it increased to 14.7%. As a whole, the positive effect of proline exogenous application under saline conditions could be partly explained by the enhanced role of this organic compound in osmoregulation and its likely protective effect against membrane lipid peroxidation

    Molecular mechanisms of phosphate and zinc signalling crosstalk in plants: Phosphate and zinc loading into root xylem in Arabidopsis

    No full text
    International audienceInorganic phosphate (Pi) and Zinc (Zn) are an essential macro- and micronutrients for plant survival. Control of Pi and Zn content in tissues is of major importance for normal plant growth and development. Zn deficiency typically leads to Pi over-accumulation in shoots (and vice versa), signifying the presence of complex interactions that link the homeostatic regulation of these two nutrients. Despite their primary importance, the molecular bases of these interactions remains poorly understood. Recent research has placed the co-regulation of these two elements at a limiting step in Pi and Zn distribution within plants, e.g. the loading of Pi and Zn into root xylem. In Arabidopsis thaliana, this process mainly involves members of the Phosphate 1 (PHO1 and PHO1;H1) family (for Pi) and the heavy metal ATPases protein (HMA2 and HMA4) family (for Zn). This review examines recent progress in determining the molecular mechanisms that regulate the loading of Pi and Zn into root xylem, by individually describing these specific genes. The first molecular evidence for their signalling crosstalk at this particular step of their transport in plants is also presented, with an emerging role for PHO1;H3. This recent progress is important for biotechnological and agronomic strategies aimed at enhancing Pi and Zn transfer to the aerial part of plants

    Identification de gènes impliqués dans l’accumulation des métaux lourds chez la laitue (Lactuca sativa)

    No full text
    Identification de gènes impliqués dans l’accumulation des métaux lourds chez la laitue (Lactuca sativa). 1er congrès International de Technologies Alimentaires et Contrôle Qualité des Aliment

    Phosphate, phytate and phytases in plants: from fundamental knowledge gained in Arabidopsis to potential biotechnological applications in wheat

    No full text
    Phosphorus (P) is an essential macronutrient for all living organisms. In plants, P is taken up from the rhizosphere by the roots mainly as inorganic phosphate (Pi), which is required in large and sufficient quantities to maximize crop yields. In today's agricultural society, crop yield is mostly ensured by the excessive use of Pi fertilizers, a costly practice neither eco-friendly or sustainable. Therefore, generating plants with improved P use efficiency (PUE) is of major interest. Among the various strategies employed to date, attempts to engineer genetically modified crops with improved capacity to utilize phytate (PA), the largest soil P form and unfortunately not taken up by plants, remains a key challenge. To meet these challenges, we need a better understanding of the mechanisms regulating Pi sensing, signaling, transport and storage in plants. In this review, we summarize the current knowledge on these aspects, which are mainly gained from investigations conducted in Arabidopsis thaliana, and we extended it to those available on an economically important crop, wheat. Strategies to enhance the PA use, through the use of bacterial or fungal phytases and other attempts of reducing seed PA levels, are also discussed. We critically review these data in terms of their potential for use as a technology for genetic manipulation of PUE in wheat, which would be both economically and environmentally beneficial

    Phosphate and zinc transport and signalling in plants: toward a better understanding of their homeostasis interaction.

    Get PDF
    International audienceInorganic phosphate (Pi) and zinc (Zn) are two essential nutrients for plant growth. In soils, these two minerals are either present in low amounts or are poorly available to plants. Consequently, worldwide agriculture has become dependent on external sources of Pi and Zn fertilizers to increase crop yields. However, this strategy is neither economically nor ecologically sustainable in the long term, particularly for Pi, which is a non-renewable resource. To date, research has emphasized the analysis of mineral nutrition considering each nutrient individually, and showed that Pi and Zn homeostasis is highly regulated in a complex process. Interestingly, numerous observations point to an unexpected interconnection between the homeostasis of the two nutrients. Nevertheless, despite their fundamental importance, the molecular bases and biological significance of these interactions remain largely unknown. Such interconnections can account for shortcomings of current agronomic models that typically focus on improving the assimilation of individual elements. Here, current knowledge on the regulation of the transport and signalling of Pi and Zn individually is reviewed, and then insights are provided on the recent progress made towards a better understanding of the Zn-Pi homeostasis interaction in plants

    Phosphate/Zinc interaction analysis in two lettuce varieties reveals contrasting effects on biomass, photosynthesis, and dynamics of Pi transport

    No full text
    Inorganic phosphate (Pi) and Zinc (Zn) are essential nutrients for normal plant growth. Interaction between these elements has been observed in many crop plants. Despite its agronomic importance, the biological significance and genetic basis of this interaction remain largely unknown. Here we examined the Pi/Zn interaction in two lettuce (Lactuca sativa) varieties, namely, "Paris Island Cos" and "Kordaat." The effects of variation in Pi and Zn supply were assessed on biomass and photosynthesis for each variety. Paris Island Cos displayed better growth and photosynthesis compared to Kordaat under all the conditions tested. Correlation analysis was performed to determine the interconnectivity between Pi and Zn intracellular contents in both varieties. Paris Island Cos showed a strong negative correlation between the accumulation levels of Pi and Zn in shoots and roots. However, no relation was observed for Kordaat. The increase of Zn concentration in the medium causes a decrease in dynamics of Pi transport in Paris Island Cos, but not in Kordaat plants. Taken together, results revealed a contrasting behavior between the two lettuce varieties in terms of the coregulation of Pi and Zn homeostasis and provided evidence in favor of a genetic basis for the interconnection of these two elements

    Genetic analysis of cadmium accumulation in lettuce (Lactuca sativa)

    No full text
    This work characterized mechanisms controlling cadmium (Cd) tolerance and accumulation in lettuce at both the physiological and genetic levels. These traits were evaluated in 18 Lactuca accessions representing a large genetic diversity. Cd tolerance and accumulation in roots and shoots as well as Cd translocation from roots to the shoot varied independently, and with a significant range of variation. Analyses of F1 progenies of crosses between cultivars with contrasted phenotypes showed that high tolerance to Cd, low Cd accumulation and low Cd root-shoot translocation were recessive traits. Results of analyses of F2 progenies of different crosses suggest that root Cd concentration and root-shoot Cd translocation were under a complex genetic determinism involving at least two loci. This work thus revealed that limiting both Cd accumulation and Cd root-shoot translocation in lettuce is possible and depends on recessive loci. Differences in the ability to accumulate Cd in roots in the long term could not be linked to differences in short-term 109Cd uptake into, or efflux from, roots. In contrast, the cultivar with the highest root-shoot Cd translocation was the same in the long term and in the short term, which suggests that this trait relies on processes that are implemented quickly (i.e. in less than three days) after the start of Cd exposure
    corecore