103 research outputs found

    Leaf wax <i>n</i>-alkane distributions record ecological changes during the Younger Dryas at Trzechowskie paleolake (northern Poland) without temporal delay

    Get PDF
    While of higher plant origin, a specific source assignment of sedimentary leaf wax n-alkanes remains difficult. In addition, it is unknown how fast a changing catchment vegetation would be reflected in sedimentary leaf wax archives. In particular, for a quantitative interpretation of n-alkane C and H isotope ratios in terms of paleohydrological and paleoecological changes, a better understanding of transfer times and dominant sedimentary sources of leaf wax n-alkanes is required.In this study we tested to what extent compositional changes in leaf wax n-alkanes can be linked to known vegetation changes by comparison with high-resolution palynological data from the same archive. We analyzed leaf wax n-alkane concentrations and distributions in decadal resolution from a sedimentary record from Trzechowskie paleolake (TRZ, northern Poland), covering the Late Glacial to early Holocene (13&thinsp;360–9940&thinsp;yr&thinsp;BP). As an additional source indicator of targeted n-alkanes, compound-specific carbon isotopic data have been generated in lower time resolution. The results indicated rapid responses of n-alkane distribution patterns coinciding with major climatic and paleoecological transitions. We found a shift towards higher average chain length (ACL) values at the Allerød–Younger Dryas (YD) transition between 12&thinsp;680 and 12&thinsp;600&thinsp;yr&thinsp;BP, coevaled with a decreasing contribution of arboreal pollen (mainly Pinus and Betula) and a subsequently higher abundance of pollen derived from herbaceous plants (Poaceae, Cyperaceae, Artemisia), shrubs, and dwarf shrubs (Juniperus and Salix). The termination of the YD was characterized by a successive increase in n-alkane concentrations coinciding with a sharp decrease in ACL values between 11&thinsp;580 and 11&thinsp;490&thinsp;yr&thinsp;BP, reflecting the expansion of woodland vegetation at the YD–Holocene transition. A gradual reversal to longer chain lengths after 11&thinsp;200&thinsp;yr&thinsp;BP, together with decreasing n-alkane concentrations, most likely reflects the early Holocene vegetation succession with a decline of Betula.These results show that n-alkane distributions reflect vegetation changes and that a fast (i.e., subdecadal) signal transfer occurred. However, our data also indicate that a standard interpretation of directional changes in biomarker ratios remains difficult. Instead, responses such as changes in ACL need to be discussed in the context of other proxy data. In addition, we find that organic geochemical data integrate different ecological information compared to pollen, since some gymnosperm genera, such as Pinus, produce only a very low amount of n-alkanes and for this reason their contribution may be largely absent from biomarker records. Our results demonstrate that a combination of palynological and n-alkane data can be used to infer the major sedimentary leaf wax sources and constrain leaf wax transport times from the plant source to the sedimentary sink and thus pave the way towards quantitative interpretation of compound-specific hydrogen isotope ratios for paleohydrological reconstructions.</p

    Climate change and the rise of the central Asian Silk Roads

    Get PDF
    The final centuries BCE (Before Common Era) saw the main focus of trade between the Far East and Europe switch from the so called Northern Route across the Asian steppes to the classical silk roads. The cities across central Asia flourished and grew in size and importance. While clearly there were political, economic and cultural drivers for these changes, there may also have been a role for changes in climate in this relatively arid region of Asia. Analysis of a new ensemble of snapshot global climate model simulations, run every 250 years over the last 6000 years, allows us to assess the long term climatological changes seen across the central Asian arid region through which the classical Silk Roads run. While the climate is comparatively stable through the Holocene, the fluctuations seen in these simulations match significant cultural developments in the region. From 1500 BCE the deterioration of climate from a transient precipitation peak, along with technological development and the immigration of Aryan nomads, drove a shift towards urbanization and probably irrigation, culminating in the founding of the major cities of Bukhara and Samarkand around 700–500 BCE. Between 1000 and 250 BCE the modelled precipitation in the central Asian arid region undergoes a transition towards wetter climates. The changes in the Western Disturbances, which is the key weather system for central Asian precipitation, provides 10% more precipitation and the increased hydrological resources may provide the climatological foundation for the golden era of Silk Road trade

    In search of tools for the use of Country-Image (CI) in the brand

    Get PDF
    Existing country image (CI) literature tends to focus on consumer behaviour. In contrast, this paper approaches CI from the point of view of the firm. In doing so, it seeks to identify the means by which international companies associate a brand with a specific country of origin in order to build brand values. In particular, it looks at the use of CI cues in brand strategies. The paper is based on exploratory research comprising a case study of two contrasting companies from the cosmetics industry, Natura, a domestic company, and the French-owned L’Occitane, both of which draw on images of Brazil to build their brands. Specific elements of CI used in branding are identified, and the extent to which the use of these differs depending on the origin of the owning company is explored. The cases suggest that CI can be exploited in different contexts. Through analysis of the elements used by both companies to build strong brands associated with the Brazilian CI—Natura Cosméticos and L’Occitane au Brésil—six tools are identified that can be combined by firms to deliver brand values, derived from any country, through the use of CI

    Measuring the Degree of Corporate Social Media Use.

    No full text
    This article aims to provide a model with which to measure the degree of corporate social media use or, in other words, the extent to which companies are exploiting the potentialities of single or multiple social media platforms. This is, however, explicitly different from using metrics to assess the success of social media activities, as it is purely measuring how intensively a pre-defined group of social media is utilized, taking into account the frequency of social media activity by the brand as well as the related user reactions. The degree of corporate social media use helps companies and market researchers analyze single brands or companies and compare them with other brands, competitors, or industry averages. The degree of corporate social media use is a useful indicator which should be combined with social media metrics in order to draw better conclusions about where to increase or intensify social media activities
    corecore