516 research outputs found

    Vitamin C inhibits endothelial cell apoptosis in congestive heart failure

    Get PDF
    Background - Proinflammatory cytokines like tumor necrosis factor- and oxidative stress induce apoptotic cell death in endothelial cells (ECs). Systemic inflammation and increased oxidative stress in congestive heart failure (CHF) coincide with enhanced EC apoptosis and the development of endothelial dysfunction. Therefore, we investigated the effects of antioxidative vitamin C therapy on EC apoptosis in CHF patients. Methods and Results - Vitamin C dose dependently suppressed the induction of EC apoptosis by tumor necrosis factor- and angiotensin II in vitro as assessed by DNA fragmentation, DAPI nuclear staining, and MTT viability assay. The antiapoptotic effect of vitamin C was associated with reduced cytochrome C release from mitochondria and the inhibition of caspase-9 activity. To assess EC protection by vitamin C in CHF patients, we prospectively randomized CHF patients in a double-blind trial to vitamin C treatment versus placebo. Vitamin C administration to CHF patients markedly reduced plasma levels of circulating apoptotic microparticles to 32±8% of baseline levels, whereas placebo had no effect (87±14%, P<0.005). In addition, vitamin C administration suppressed the proapoptotic activity on EC of the serum of CHF patients (P<0.001). Conclusions - Administration of vitamin C to CHF patients suppresses EC apoptosis in vivo, which might contribute to the established functional benefit of vitamin C supplementation on endothelial function

    Computational identification of hepatitis C virus associated microRNA-mRNA regulatory modules in human livers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatitis C virus (HCV) is a major cause of chronic liver disease by infecting over 170 million people worldwide. Recent studies have shown that microRNAs (miRNAs), a class of small non-coding regulatory RNAs, are involved in the regulation of HCV infection, but their functions have not been systematically studied. We propose an integrative strategy for identifying the miRNA-mRNA regulatory modules that are associated with HCV infection. This strategy combines paired expression profiles of miRNAs and mRNAs and computational target predictions. A miRNA-mRNA regulatory module consists of a set of miRNAs and their targets, in which the miRNAs are predicted to coordinately regulate the level of the target mRNA.</p> <p>Results</p> <p>We simultaneously profiled the expression of cellular miRNAs and mRNAs across 30 HCV positive or negative human liver biopsy samples using microarray technology. We constructed a miRNA-mRNA regulatory network, and using a graph theoretical approach, identified 38 miRNA-mRNA regulatory modules in the network that were associated with HCV infection. We evaluated the direct miRNA regulation of the mRNA levels of targets in regulatory modules using previously published miRNA transfection data. We analyzed the functional roles of individual modules at the systems level by integrating a large-scale protein interaction network. We found that various biological processes, including some HCV infection related canonical pathways, were regulated at the miRNA level during HCV infection.</p> <p>Conclusion</p> <p>Our regulatory modules provide a framework for future experimental analyses. This report demonstrates the utility of our approach to obtain new insights into post-transcriptional gene regulation at the miRNA level in complex human diseases.</p

    The geometrical shape of mesenchymal stromal cells measured by quantitative shape descriptors is determined by the stiffness of the biomaterial and by cyclic tensile forces

    Full text link
    Controlling mesenchymal stromal cell (MSC) shape is a novel method for investigating and directing MSC behaviour in vitro. it was hypothesized that specifigc MSC shapes can be generated by using stiffnessâ defined biomaterial surfaces and by applying cyclic tensile forces. Biomaterials used were thin and thick silicone sheets, fibronectin coating, and compacted collagen type I sheets. The MSC morphology was quantified by shape descriptors describing dimensions and membrane protrusions. Nanoscale stiffness was measured by atomic force microscopy and the expression of smooth muscle cell (SMC) marker genes (ACTA2, TAGLN, CNN1) by quantitative reverseâ transcription polymerase chain reaction. Cyclic stretch was applied with 2.5% or 5% amplitudes. Attachment to biomaterials with a higher stiffness yielded more elongated MSCs with fewer membrane protrusions compared with biomaterials with a lower stiffness. For cyclic stretch, compacted collagen sheets were selected, which were associated with the most elongated MSC shape across all investigated biomaterials. As expected, cyclic stretch elongated MSCs during stretch. One hour after cessation of stretch, however, MSC shape was rounder again, suggesting loss of stretchâ induced shape. Different shape descriptor values obtained by different stretch regimes correlated significantly with the expression levels of SMC marker genes. Values of approximately 0.4 for roundness and 3.4 for aspect ratio were critical for the highest expression levels of ACTA2 and CNN1. Thus, specific shape descriptor values, which can be generated using biomaterialâ associated stiffness and tensile forces, can serve as a template for the induction of specific gene expression levels in MSC. Copyright © 2017 John Wiley & Sons, Ltd.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141253/1/term2263.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141253/2/term2263_am.pd

    Perspectives for integrating human and environmental risk assessment and synergies with socio-economic analysis

    Get PDF
    International audienceFor more than a decade, the integration of human and environmental risk assessment (RA) has become an attractive vision. At the same time, existing European regulations of chemical substances such as REACH (EC Regulation No. 1907/2006), the Plant Protection Products Regulation (EC regulation 1107/2009) and Biocide Regulation (EC Regulation 528/2012) continue to ask for sector-specific RAs, each of which have their individual information requirements regarding exposure and hazard data, and also use different methodologies for the ultimate risk quantification. In response to this difference between the vision for integration and the current scientific and regulatory practice, the present paper outlines five medium-term opportunities for integrating human and environmental RA, followed by detailed discussions of the associated major components and their state of the art. Current hazard assessment approaches are analyzed in terms of data availability and quality, and covering non-test tools, the integrated testing strategy (ITS) approach, the adverse outcome pathway (AOP) concept, methods for assessing uncertainty, and the issue of explicitly treating mixture toxicity. With respect to exposure, opportunities for integrating exposure assessment are discussed, taking into account the uncertainty, standardization and validation of exposure modeling as well as the availability of exposure data. A further focus is on ways to complement RA by a socio-economic assessment (SEA) in order to better inform about risk management options. In this way, the present analysis, developed as part of the EU FP7 project HEROIC, may contribute to paving the way for integrating, where useful and possible, human and environmental RA in a manner suitable for its coupling with SEA

    Network-based models for social recommender systems

    Get PDF
    With the overwhelming online products available in recent years, there is an increasing need to filter and deliver relevant personalized advice for users. Recommender systems solve this problem by modeling and predicting individual preferences for a great variety of items such as movies, books or research articles. In this chapter, we explore rigorous network-based models that outperform leading approaches for recommendation. The network models we consider are based on the explicit assumption that there are groups of individuals and of items, and that the preferences of an individual for an item are determined only by their group memberships. The accurate prediction of individual user preferences over items can be accomplished by different methodologies, such as Monte Carlo sampling or Expectation-Maximization methods, the latter resulting in a scalable algorithm which is suitable for large datasets

    PYRUVATE DEHYDROGENASE KINASE (PDK)

    Get PDF
    Abstract: Several oximes of triterpenes with a 17-~ hydroxyl and abietane derivatives are inlfibitors of pyruvate dehydrogenase kinase (PDK) activity. The oxime 12 and dehydroabietyl amine 2 exhibit a blood glucose lowering effect in the diabetic ob/ob mouse after a single oral dose of 100 ~tmol/kg. However, the mechanism of the blood glucose lowering effect is likely unrelated to PDK inhibition

    High-Frequency, Functional HIV-Specific T-Follicular Helper and Regulatory Cells Are Present Within Germinal Centers in Children but Not Adults

    Get PDF
    Broadly neutralizing antibodies (bnAbs) against HIV-1 are an effective means of preventing transmission. To better understand the mechanisms by which HIV-specific bnAbs naturally develop, we investigated blood and lymphoid tissue in pediatric infection, since potent bnAbs develop with greater frequency in children than adults. As in adults, the frequency of circulating effector T-follicular helper cells (TFH) in HIV infected, treatment naïve children correlates with neutralization breadth. However, major differences between children and adults were also observed both in circulation, and in a small number of tonsil samples. In children, TFH cells are significantly more abundant, both in blood and in lymphoid tissue germinal centers, than in adults. Second, HIV-specific TFH cells are more frequent in pediatric than in adult lymphoid tissue and secrete the signature cytokine IL-21, which HIV-infected adults do not. Third, the enrichment of IL-21-secreting HIV-specific TFH in pediatric lymphoid tissue is accompanied by increased TFH regulation via more abundant regulatory follicular T-cells and HIV-specific CXCR5+ CD8 T-cells compared to adults. The relationship between regulation and neutralization breadth is also observed in the pediatric PBMC samples and correlates with neutralization breadth. Matching neutralization data from lymphoid tissue samples is not available. However, the distinction between infected children and adults in the magnitude, quality and regulation of HIV-specific TFH responses is consistent with the superior ability of children to develop high-frequency, potent bnAbs. These findings suggest the possibility that the optimal timing for next generation vaccine strategies designed to induce high-frequency, potent bnAbs to prevent HIV infection in adults would be in childhood

    Mechanisms of Severe Acute Respiratory Syndrome Coronavirus-Induced Acute Lung Injury

    Get PDF
    ABSTRACT Systems biology offers considerable promise in uncovering novel pathways by which viruses and other microbial pathogens interact with host signaling and expression networks to mediate disease severity. In this study, we have developed an unbiased modeling approach to identify new pathways and network connections mediating acute lung injury, using severe acute respiratory syndrome coronavirus (SARS-CoV) as a model pathogen. We utilized a time course of matched virologic, pathological, and transcriptomic data within a novel methodological framework that can detect pathway enrichment among key highly connected network genes. This unbiased approach produced a high-priority list of 4 genes in one pathway out of over 3,500 genes that were differentially expressed following SARS-CoV infection. With these data, we predicted that the urokinase and other wound repair pathways would regulate lethal versus sublethal disease following SARS-CoV infection in mice. We validated the importance of the urokinase pathway for SARS-CoV disease severity using genetically defined knockout mice, proteomic correlates of pathway activation, and pathological disease severity. The results of these studies demonstrate that a fine balance exists between host coagulation and fibrinolysin pathways regulating pathological disease outcomes, including diffuse alveolar damage and acute lung injury, following infection with highly pathogenic respiratory viruses, such as SARS-CoV.IMPORTANCESevere acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 and 2003, and infected patients developed an atypical pneumonia, acute lung injury (ALI), and acute respiratory distress syndrome (ARDS) leading to pulmonary fibrosis and death. We identified sets of differentially expressed genes that contribute to ALI and ARDS using lethal and sublethal SARS-CoV infection models. Mathematical prioritization of our gene sets identified the urokinase and extracellular matrix remodeling pathways as the most enriched pathways. By infecting Serpine1-knockout mice, we showed that the urokinase pathway had a significant effect on both lung pathology and overall SARS-CoV pathogenesis. These results demonstrate the effective use of unbiased modeling techniques for identification of high-priority host targets that regulate disease outcomes. Similar transcriptional signatures were noted in 1918 and 2009 H1N1 influenza virus-infected mice, suggesting a common, potentially treatable mechanism in development of virus-induced ALI
    corecore