16 research outputs found

    Experimental Study of the Crack Control of Concrete by Self-healing of Synthetic Fiber Reinforced Cementitious Composites Synthetic Fiber

    Get PDF
    In this study, it is possible to disperse effectively cracked using synthetic fiber, an examination of the most suitable self-healing conditions was performed on the above crack width 0.1mm. As a result, effective crack dispersion using polyvinyl alcohol (PVA) fibers with polar OH- groups, as well as improved self-healing for cracks that are larger than 0.1 mm in width, posing concerns of CO2 gas and Cl- penetration, were observed. Also, CO32- reacts with Ca2+ in the concrete crack, resulting in the precipitation of a carbonate compound, CaCO3. Based on this, it is deemed possible for the recovery of effective watertightness to be made from cracks that are larger than 0.1 mm in width. In addition, it was determined that, as for the most suitable self-healing conditions in the inside and surface of the cracks, calcium hydroxide (Ca(OH)2) solution with CO2 micro-bubble was more effective in promoting the self-healing capability than water with CO2 micro-bubble

    Human Mesenchymal Stem Cells Self-Renew and Differentiate According to a Deterministic Hierarchy

    Get PDF
    BACKGROUND:Mesenchymal progenitor cells (MPCs) have been isolated from a variety of connective tissues, and are commonly called "mesenchymal stem cells" (MSCs). A stem cell is defined as having robust clonal self-renewal and multilineage differentiation potential. Accordingly, the term "MSC" has been criticised, as there is little data demonstrating self-renewal of definitive single-cell-derived (SCD) clonal populations from a mesenchymal cell source. METHODOLOGY/PRINCIPAL FINDINGS:Here we show that a tractable MPC population, human umbilical cord perivascular cells (HUCPVCs), was capable of multilineage differentiation in vitro and, more importantly, contributed to rapid connective tissue healing in vivo by producing bone, cartilage and fibrous stroma. Furthermore, HUCPVCs exhibit a high clonogenic frequency, allowing us to isolate definitive SCD parent and daughter clones from mixed gender suspensions as determined by Y-chromosome fluorescent in situ hybridization. CONCLUSIONS/SIGNIFICANCE:Analysis of the multilineage differentiation capacity of SCD parent clones and daughter clones enabled us to formulate a new hierarchical schema for MSC self-renewal and differentiation in which a self-renewing multipotent MSC gives rise to more restricted self-renewing progenitors that gradually lose differentiation potential until a state of complete restriction to the fibroblast is reached

    Phase I/II study of S-1 combined with paclitaxel in patients with unresectable and/or recurrent advanced gastric cancer

    Get PDF
    Both paclitaxel and S-1 are effective against gastric cancer, but the optimal regimen for combined chemotherapy with these drugs remains unclear. This phase I/II study was designed to determine the maximum tolerated dose (MTD), recommended dose (RD), dose-limiting toxicity (DLT), and objective response rate of paclitaxel in combination with S-1. S-1 was administered orally at a fixed dose of 80 mg m−2 day−1 from days 1 to 14 of a 28-day cycle. Paclitaxel was given intravenously on days 1, 8, and 15, starting with a dose of 40 mg m−2 day−1. The dose was increased in a stepwise manner to 70 mg m−2. Treatment was repeated every 4 weeks unless disease progression was confirmed. In the phase I portion, 17 patients were enrolled. The MTD of paclitaxel was estimated to be 70 mg m−2 because 40% of the patients given this dose level (two of five) had DLT. The RD was determined to be 60 mg m−2. In the phase II portion, 24 patients, including five with assessable disease who received the RD in the phase I portion, were evaluated. The median number of treatment courses was six (range: 1–17). The incidence of the worst-grade toxicity in patients given the RD was 28 and 8%, respectively. All toxic effects were manageable. The response rate was 54.1%, and the median survival time was 15.5 months. Our phase I/II trial showed that S-1 combined with paclitaxel is effective and well tolerated in patients with advanced gastric cancer

    Approaching the precursor nuclei of the third r-process peak with RIBs

    Get PDF
    The rapid neutron nucleosynthesis process involves an enormous amount of very exotic neutron-rich nuclei, which represent a theoretical and experimental challenge. Two of the main decay properties that affect the final abundance distribution the most are half-lives and neutron branching ratios. Using fragmentation of a primary 238^{238}U beam at GSI we were able to measure such properties for several neutron-rich nuclei from 208^{208}Hg to 218^{218}Pb. This contribution provides a short update on the status of the data analysis of this experiment, together with a compilation of the latest results published in this mass region, both experimental and theoretical. The impact of the uncertainties connected with the beta-decay rates and with beta-delayed neutron emission is illustrated on the basis of rr-process network calculations. In order to obtain a reasonable reproduction of the third rr-process peak, it is expected that both half-lives and neutron branching ratios are substantially smaller, than those based on FRDM+QRPA, commonly used in rr-process model calculations. Further measurements around N126N\sim126 are required for a reliable modelling of the underlying nuclear structure, and for performing more realistic rr-process abundance calculations.The rapid neutron nucleosynthesis process involves an enormous amount of very exotic neutron-rich nuclei, which represent a theoretical and experimental challenge. Two of the main decay properties that affect the final abundance distribution the most are half-lives and neutron branching ratios. Using fragmentation of a primary 238U beam at GSI we were able to measure such properties for several neutron-rich nuclei from 208Hg to 218Pb. This contribution provides a short update on the status of the data analysis of this experiment, together with a compilation of the latest results published in this mass region, both experimental and theoretical. The impact of the uncertainties connected with the beta-decay rates and with beta-delayed neutron emission is illustrated on the basis of r-process network calculations. In order to obtain a reasonable reproduction of the third r-process peak, it is expected that both half-lives and neutron branching ratios are substantially smaller, than those based on FRDM+QRPA, commonly used in r-process model calculations. Further measurements around N ~ 126 are required for a reliable modelling of the underlying nuclear structure, and for performing more realistic r-process abundance calculations
    corecore