72 research outputs found
PD-1 and PD-L1 expression in pulmonary carcinoid tumors and their association to tumor spread
Pulmonary carcinoid (PC) tumors are rare tumors that account for approximately 1% of all lung cancers. The primary treatment option is surgery, while there is no standard treatment for metastatic disease. As the number of PCs diagnosed yearly is increasing, there is a need to establish novel therapeutic options. This study aimed to investigate programmed death protein 1 (PD-1) and programmed death ligand 1 (PD-L1) expression in PC tumors since blocking of the PD-1/PD-L1 pathway is a promising therapeutic option in various other malignancies. A total of 168 PC patients treated between 1990 and 2013 were collected from the Finnish biobanks. After re-evaluation of the tumors, 131 (78%) were classified as typical carcinoid (TC) and 37 (22%) as atypical carcinoid (AC) tumors. Primary tumor samples were immunohistochemically labeled for PD-1, PD-L1 and CD8. High PD-1 expression was detected in 16% of the tumors. PD-L1 expression was detected in 7% of TC tumors; all AC tumors were PD-L1 negative. PD-L1 expression was associated with mediastinal lymph-node metastasis at the time of diagnosis (P = 0.021) as well as overall metastatic potential of the tumor (P = 0.010). Neither PD-1 expression, PD-L1 expression nor CD8(+) T cell density was associated with survival. In conclusion, PD-1 and PD-L1 were expressed in a small proportion of PC tumors and PD-L1 expression was associated with metastatic disease. Targeting of the PD-1/PD-L1 pathway with immune checkpoint inhibitors may thus offer a treatment option for a subset of PC patients.Peer reviewe
Does breast carcinoma belong to the Lynch syndrome tumor spectrum? - Somatic mutational profiles vs. ovarian and colorectal carcinomas
: ; ; ; ;Inherited DNA mismatch repair (MMR) defects cause predisposition to colorectal, endometrial, ovarian, and other cancers occurring in Lynch syndrome (LS). It is unsettled whether breast carcinoma belongs to the LS tumor spectrum. We approached this question through somatic mutational analysis of breast carcinomas from LS families, using established LS-spectrum tumors for comparison. Somatic mutational profiles of 578 cancer-relevant genes were determined for LS-breast cancer (LS-BC, n = 20), non-carrier breast cancer (NC-BC, n = 10), LS-ovarian cancer (LS-OC, n = 16), and LS-colorectal cancer (LS-CRC, n = 18) from the National LS Registry of Finland. Microsatellite and MMR protein analysis stratified LS-BCs into MMR-deficient (dMMR, n = 11) and MMR-proficient (pMMR, n = 9) subgroups. All NC-BCs were pMMR and all LS-OCs and LS-CRCs dMMR. All but one dMMR LS-BCs were hypermutated (> 10 non-synonymous mutations/Mb; average 174/Mb per tumor) and the frequency of MMR-deficiency-associated signatures 6, 20, and 26 was comparable to that in LS-OC and LS-CRC. LS-BCs that were pMMR resembled NC-BCs with respect to somatic mutational loads (4/9, 44%, hypermutated with average mutation count 33/Mb vs. 3/10, 30%, hypermutated with average 88 mutations/Mb), whereas mutational signatures shared features of dMMR LS-BC, LS-OC, and LS-CRC. Epigenetic regulatory genes were significantly enriched as mutational targets in LS-BC, LS-OC, and LS-CRC. Many top mutant genes of our LS-BCs have previously been identified as drivers of unselected breast carcinomas. In conclusion, somatic mutational signatures suggest that conventional MMR status of tumor tissues is likely to underestimate the significance of the predisposing MMR defects as contributors to breast tumorigenesis in LS.Peer reviewe
Prognostic Value of Immune Environment Analysis in Small Bowel Adenocarcinomas with Verified Mutational Landscape and Predisposing Conditions
Background: Small bowel adenocarcinoma (SBA) is a rare yet insidious cancer with poor survival. The abundance of tumour-infiltrating lymphocytes is associated with improved survival, but the role of the programmed death-1/programmed death ligand-1 (PD-1/PD-L1) pathway in tumour escape is controversial. We evaluated immune cell infiltration, PD1/PD-L1 expression and their prognostic value in a series of SBAs with previously verified predisposing conditions and exome-wide somatic mutation characterization. Methods: Formalin-fixed paraffin-embedded tissue sections stained for CD3, CD8, PD-L1 and PD-1 were analysed from 94 SBAs. An immune cell score (ICS) was formed from the amount of the CD3 and CD8 positive lymphocytes from the tumour centre and invasive margin. The PD-L1 and PD-1 positive immune cells (ICs) and ICS were combined into a variable called Immunoprofile. Results: High ICS, PD-L1IC and PD-1, individually and combined as Immunoprofile, were prognostic for better patient outcome. Sixty-five (69%) SBAs expressed ≥1% positive PD-L1IC. A high tumour mutation burden was common (19%) and associated with immune markers. Immunoprofile, adjusted for TNM stage, mismatch repair status, tumour location, sex and age were independent prognostic markers for disease-specific and overall survival. Conclusions: Analysing tumoral immune contexture provides prognostic information in SBA. Combining ICS, PD-1 and PD-L1IC as Immunoprofile enhanced the prognostic performance
Epidemiological, clinical and molecular characterization of Lynch-like syndrome : A population-based study
Colorectal carcinomas that are mismatch repair (MMR)-deficient in the absence of MLH1 promoter methylation or germline mutations represent Lynch-like syndrome (LLS). Double somatic events inactivating MMR genes are involved in the etiology of LLS tumors. Our purpose was to define the clinical and broader molecular hallmarks of LLS tumors and the population incidence of LLS, which remain poorly characterized. We investigated 762 consecutive colorectal carcinomas operated in Central Finland in 2000-2010. LLS cases were identified by a stepwise protocol based on MMR protein expression, MLH1 methylation and MMR gene mutation status. LLS tumors were profiled for CpG Island Methylator Phenotype (CIMP) and somatic mutations in 578 cancer-relevant genes. Among 107 MMR-deficient tumors, 81 (76%) were attributable to MLH1 promoter methylation and 9 (8%) to germline mutations (Lynch syndrome, LS), leaving 14 LLS cases (13%) (3 remained unclassified). LLS carcinomas were diagnosed at a mean age of 65 years (vs. 44 years in LS, p <0.001), had a proximal to distal ratio of 1:1, and all were BRAF V600E-negative. Two somatic events in MMR genes were identifiable in 11 tumors (79%). As novel findings, the tumors contained an average of 31 nonsynonymous somatic mutations/Mb and 13/14 were CIMP-positive. In conclusion, we establish the epidemiological, clinical and molecular characteristics of LLS in a population-based study design. Significantly more frequent CIMP-positivity and lower rates of somatic mutations make a distinction to LS. The absence of BRAF V600E mutation separates LLS colorectal carcinomas from MLH1-methylated colorectal carcinomas with CIMP-positive phenotype.Peer reviewe
Immunoscore in mismatch repair-proficient and -deficient colon cancer
The aim of this study was to investigate immune response and its prognostic significance in colon carcinomas using the previously described Immunoscore (IS). A population-based series of 779 colorectal cancers, operated on between 2000 and 2010, were classified according to tumour, node, metastasis (TNM) status, mismatch repair (MMR), and BRAF mutation status. Rectal cancer cases (n = 203) were excluded as a high proportion of these patients received preoperative neoadjuvant chemoradiotherapy. Tissue microarray (TMA) samples collected from the tumour centre and invasive front were immunostained for CD3 and CD8. Lymphocytes were then digitally calculated to categorize IS from grade 0 to 4. Samples adequate for IS were available from 510 tumours. IS was significantly associated with AJCC/UICC stage, T stage, lymph node and distant metastases, perineural and lymphovascular invasion, MMR status, and BRAF mutation status. For IS0, IS1, IS2, IS3 and IS4, respectively, the 5-year disease-free survival (DFS) rates were 59, 68, 78, 83 and 94% (p Peer reviewe
Somatic mutation profiles as molecular classifiers of ulcerative colitis-associated colorectal cancer
Ulcerative colitis increases colorectal cancer risk by mechanisms that remain incompletely understood. We approached this question by determining the genetic and epigenetic profiles of colitis-associated colorectal carcinomas (CA-CRC). The findings were compared to Lynch syndrome (LS), a different form of cancer predisposition that shares the importance of immunological factors in tumorigenesis. CA-CRCs (n = 27) were investigated for microsatellite instability, CpG island methylator phenotype and somatic mutations of 999 cancer-relevant genes ("Pan-cancer" panel). A subpanel of "Pan-cancer" design (578 genes) was used for LS colorectal tumors (n = 28). Mutational loads and signatures stratified CA-CRCs into three subgroups: hypermutated microsatellite-unstable (Group 1, n = 1), hypermutated microsatellite-stable (Group 2, n = 9) and nonhypermutated microsatellite-stable (Group 3, n = 17). The Group 1 tumor was the only one with MLH1 promoter hypermethylation and exhibited the mismatch repair deficiency-associated Signatures 21 and 15. Signatures 30 and 32 characterized Group 2, whereas no prominent single signature existed in Group 3. TP53, the most common mutational target in CA-CRC (16/27, 59%), was similarly affected in Groups 2 and 3, but DNA repair genes and Wnt signaling genes were mutated significantly more often in Group 2. In LS tumors, the degree of hypermutability exceeded that of the hypermutated CA-CRC Groups 1 and 2, and somatic mutational profiles and signatures were different. In conclusion, Groups 1 (4%) and 3 (63%) comply with published studies, whereas Group 2 (33%) is novel. The existence of molecularly distinct subgroups within CA-CRC may guide clinical management, such as therapy options.Peer reviewe
Immunoprofiles and DNA Methylation of Inflammatory Marker Genes in Ulcerative Colitis-Associated Colorectal Tumorigenesis
Immunological and epigenetic changes are interconnected and contribute to tumorigenesis. We determined the immunoprofiles and promoter methylation of inflammation-related genes for colitis-associated colorectal carcinomas (CA-CRC). The results were compared with Lynch syndrome (LS)-associated colorectal tumors, which are characterized by an active immune environment through inherited mismatch repair defects. CA-CRCs (n = 31) were immunohistochemically evaluated for immune cell scores (ICSs) and PDCD1 and CD274 expression. Seven inflammation-associated genes (CD274, NTSR1, PPARG, PTGS2, PYCARD, SOCS1, and SOCS2), the repair gene MGMT, and eight standard marker genes for the CpG Island Methylator Phenotype (CIMP) were investigated for promoter methylation in CA-CRCs, LS tumors (n = 29), and paired normal mucosae by multiplex ligation-dependent probe amplification. All but one CA-CRCs were microsatellite-stable and all LS tumors were microsatellite-unstable. Most CA-CRCs had a high ICS (55%) and a positive CD274 expression in immune cells (52%). NTSR1 revealed frequent tumor-specific hypermethylation in CA-CRC and LS. When compared to LS mucosae, normal mucosae from patients with CA-CRC showed significantly higher methylation of NTSR1 and most CIMP markers. In conclusion, CA-CRCs share a frequent ICShigh/CD274pos expression pattern with LS tumors. Elevated methylation in normal mucosa may indicate field cancerization as a feature of CA-CRC-associated tumorigenesis
Immunoprofiles and DNA Methylation of Inflammatory Marker Genes in Ulcerative Colitis-Associated Colorectal Tumorigenesis
Immunological and epigenetic changes are interconnected and contribute to tumorigenesis. We determined the immunoprofiles and promoter methylation of inflammation-related genes for colitis-associated colorectal carcinomas (CA-CRC). The results were compared with Lynch syndrome (LS)-associated colorectal tumors, which are characterized by an active immune environment through inherited mismatch repair defects. CA-CRCs (n = 31) were immunohistochemically evaluated for immune cell scores (ICSs) and PDCD1 and CD274 expression. Seven inflammation-associated genes (CD274, NTSR1, PPARG, PTGS2, PYCARD, SOCS1, and SOCS2), the repair gene MGMT, and eight standard marker genes for the CpG Island Methylator Phenotype (CIMP) were investigated for promoter methylation in CA-CRCs, LS tumors (n = 29), and paired normal mucosae by multiplex ligation-dependent probe amplification. All but one CA-CRCs were microsatellite-stable and all LS tumors were microsatellite-unstable. Most CA-CRCs had a high ICS (55%) and a positive CD274 expression in immune cells (52%). NTSR1 revealed frequent tumor-specific hypermethylation in CA-CRC and LS. When compared to LS mucosae, normal mucosae from patients with CA-CRC showed significantly higher methylation of NTSR1 and most CIMP markers. In conclusion, CA-CRCs share a frequent ICShigh/CD274pos expression pattern with LS tumors. Elevated methylation in normal mucosa may indicate field cancerization as a feature of CA-CRC-associated tumorigenesis
Prognostic significance of spatial and density analysis of T lymphocytes in colorectal cancer
Background Although high T cell density is a strong favourable prognostic factor in colorectal cancer, the significance of the spatial distribution of T cells is incompletely understood. We aimed to evaluate the prognostic significance of tumour cell-T cell co-localisation and T cell densities. Methods We analysed CD3 and CD8 immunohistochemistry in a study cohort of 983 colorectal cancer patients and a validation cohort (N = 246). Individual immune and tumour cells were identified to calculate T cell densities (to derive T cell density score) and G-cross function values, estimating the likelihood of tumour cells being co-located with T cells within 20 mu m radius (to derive T cell proximity score). Results High T cell proximity score associated with longer cancer-specific survival in both the study cohort [adjusted HR for high (vs. low) 0.33, 95% CI 0.20-0.52, P-trend < 0.0001] and the validation cohort [adjusted HR for high (vs. low) 0.15, 95% CI 0.05-0.45, P-trend < 0.0001] and its prognostic value was independent of T cell density score. Conclusions The spatial point pattern analysis of tumour cell-T cell co-localisation could provide detailed information on colorectal cancer prognosis, supporting the value of spatial measurement of T cell infiltrates as a novel, robust tumour-immune biomarker.Peer reviewe
- …