15 research outputs found

    Demonstration of durable hepatitis B immune memory in children vaccinated with a DTaP5-IPV-HepB-Hib infant-toddler series 7 to 8 years previously

    Get PDF
    Vaccination against hepatitis B (HepB) provides long-term protection against infection. This is despite a reduction in HepB surface antibody (anti-HBs) concentrations over time to levels below the well-accepted correlate of protection of ≥10 mIU/mL. Continued evidence of immune memory and protection despite declined anti-HBs concentrations can be demonstrated by HepB virus surface antigen challenge studies. Long-term immune memory and protection against HepB infection has not been demonstrated previously for the pediatric hexavalent vaccine DTaP5-IPV-HepB-Hib. This phase 3, multicenter, single-group, open-label challenge study (NCT04490499; EudraCT: 2020–000126–26) evaluated immune memory against HepB infection in children who had received DTaP5-IPV-HepB-Hib at 2, 4, and 11–12 months of age, or at 2, 3, 4, and 12 months of age. At age 8–9 years, they were each challenged with 5 μg of monovalent HepB vaccine. Anti-HBs levels were measured on pre-challenge day 1 and post-challenge day 30. At baseline, 45.4% (93 of 205) had anti-HBs levels ≥10 mIU/mL. On post-challenge day 30, 99.5% (201 of 202) had anti-HBs levels ≥10 mIU/mL, regardless of initial vaccination schedule. Post-challenge, geometric mean concentrations increased 71-fold over baseline and 96.0% of children had a ≥4-fold rise in anti-HBs concentrations with similar results across both dosing schedules. The challenge dose was well tolerated. The robust anti-HBs responses after a single 5-μg dose of HepB vaccine confirm the persistence of a HepB immune memory and demonstrate that DTaP5-IPV-HepB-Hib provides long-term protection against HepB.publishedVersionPeer reviewe

    Immunogenicity and safety of primary and booster vaccination with 2 investigational formulations of diphtheria, tetanus and Haemophilus influenzae type b antigens in a hexavalent DTPa-HBV-IPV/Hib combination vaccine in comparison with the licensed Infanrix hexa

    Get PDF
    Safety and immunogenicity of 2 investigational formulations of diphtheria, tetanus and Haemophilus influenzae type b antigens of the combined diphtheria-tetanus-acellular pertussis-hepatitis B-inactivated poliomyelitis-Hib vaccine (DTPa-HBV-IPV/Hib) were evaluated in a Primary (NCT01248884) and a Booster vaccination (NCT01453998) study. In the Primary study, 721 healthy infants (randomized 1:1:1) received 3 doses of DTPa-HBV-IPV/Hib formulation A (DATAPa-HBV-IPV/Hib), or B (DBTBPa-HBV-IPV/Hib) or the licensed DTPa-HBV-IPV/Hib vaccine (Infanrix hexa, GSK; control group) at 2, 3, 4 months of age. Infants were planned to receive a booster dose at 12–15 months of age with the same formulation received in the Primary study; however, following high incidence of fever associated with the investigational formulations in the Primary study, the Booster study protocol was amended and all infants yet to receive a booster dose (N = 385) received the licensed vaccine. In the Primary study, non-inferiority of 3-dose vaccination with investigational formulations compared with the licensed vaccine was not demonstrated due to anti-pertactin failing to meet the non-inferiority criterion. Post-primary vaccination, most infants had seroprotective levels of anti-diphtheria (100% of infants), anti-tetanus antigens (100%), against hepatitis B (≥ 97.5% across groups), polyribosyl-ribitol-phosphate (≥ 88.0%) and poliovirus types 1–3 (≥ 90.5%). Seropositivity rates for each pertussis antigen were 100% in all groups. Higher incidence of fever (> 38°C) was reported in infants receiving the investigational formulations (Primary study: 75.0% [A] and 72.1% [B] vs 58.8% [control]; Booster study, before amendment: 49.4% and 46.6% vs 37.4%, respectively). The development of the investigational formulations was not further pursued

    Immunogenicity and safety of an investigational quadrivalent meningococcal conjugate vaccine administered as a booster dose in children vaccinated against meningococcal disease 3 years earlier as toddlers : A Phase III, open-label, multi-center study

    Get PDF
    Booster doses of meningococcal conjugate vaccines induce long-term protection against invasive meningococcal disease. We evaluated the immunogenicity and safety of a booster dose of MenACYW-TT in pre-school children who were primed 3 years earlier with MenACYW-TT or MCV4-TT (Nimenrix®). In this Phase III, open-label, multi-center study (NCT03476135), children (4–5 years old), who received a primary dose of MenACYW-TT or MCV4-TT as toddlers in a previous study, received a booster dose of MenACYW-TT. Titers of antibody against meningococcal serogroups A, C, W and Y were measured by serum bactericidal assay using human (hSBA) and baby rabbit (rSBA) complement in samples collected before (D0) and 30 days after (D30) booster vaccination. Safety was assessed over the 30-day study period. Ninety-one participants received the booster dose. In both study groups, hSBA titers increased from D0 to D30; serogroup C titers [95% confidence interval] were higher in the MenACYW-TT-primed vs MCV4-TT-primed group at D0 (106 [73.2, 153] vs 11.7 [7.03, 19.4], respectively) and D30 (5894 [4325, 8031] vs 1592 [1165, 2174], respectively); rSBA results were similar. Nearly all participants achieved ≥1:8 hSBA and rSBA titers at D30, which were higher or comparable to those observed post-primary dose, suggesting rapid booster responses. At D0, all hSBA and rSBA titers were higher than those observed pre-primary dose, suggesting persistence of immunogenicity. The MenACYW-TT booster dose was well-tolerated and had similar safety outcomes across study groups. These findings suggest that MenACYW-TT elicits robust booster responses in children primed 3 years earlier with MenACYW-TT or MCV4-TT.publishedVersionPeer reviewe

    Immunogenicity and safety of different schedules of the meningococcal ABCWY vaccine, with assessment of long-term antibody persistence and booster responses–results from two phase 2b randomized trials in adolescents

    Get PDF
    The meningococcal serogroup B (MenB) protein vaccine, 4CMenB, combined with MenA, MenC, MenW and MenY polysaccharide-protein conjugates for a pentavalent MenABCWY vaccine, can potentially protect against most causative agents of invasive meningococcal disease worldwide. Two phase 2b, randomized, multicenter studies were conducted (NCT02212457, NCT02946385) to assess the immunogenicity and safety of the MenABCWY vaccine as well as antibody persistence and response to a booster dose 2 years after the last vaccination, compared to 4CMenB vaccination. Participants (10 − 18 years), randomized (3:3:2:2:2:2), received the 4-component 4CMenB vaccine according to a 0–2 month (M) schedule or MenABCWY according to a 0–2, 0–6, 0-2-6, 0–1, or 0–11 M schedule. All participants received 5 injections (at M0, M1, M2, M6 and M12) with either the study vaccines or placebo/hepatitis A vaccine. Follow-on participants (4CMenB-0-2, MenABCWY-0-2, MenABCWY-0-6 and MenABCWY-0-2-6 groups) received one dose of either 4CMenB (4CMenB-0-2 group) or MenABCWY and newly enrolled, age-matched, meningococcal vaccine-naïve adolescents (randomized 1:1) received 2 doses (0–2 M) of either 4CMenB or MenABCWY. MenABCWY vaccination was immunogenic against MenB test strains. Non-inferiority for all 4 components of the 4CMenB vaccine could not be demonstrated for the 0–2 M schedule. Antibodies persisted up to 2 years post-MenABCWY vaccination and a booster dose induced an anamnestic response as higher titers were observed in follow-on participants compared to the first-dose response in vaccine-naïve participants. MenABCWY had a clinically-acceptable safety profile, not different from that of 4CMenB.publishedVersionPeer reviewe

    Safety profile of the adjuvanted recombinant zoster vaccine: Pooled analysis of two large randomised phase 3 trials

    Get PDF
    Background: The ZOE-50 (NCT01165177) and ZOE-70 (NCT01165229) phase 3 clinical trials showed that the adjuvanted recombinant zoster vaccine (RZV) was ≥90% efficacious in preventing herpes zoster in adults. Here we present a comprehensive overview of the safety data from these studies. Methods: Adults aged ≥50 (ZOE-50) and ≥70 (ZOE-70) years were randomly vaccinated with RZV or placebo. Safety analyses were performed on the pooled total vaccinated cohort, consisting of participants receiving at least one dose of RZV or placebo. Solicited and unsolicited adverse events (AEs) were collected for 7 and 30 days after each vaccination, respectively. Serious AEs (SAEs) were collected from the first vaccination until 12 months post-last dose. Fatal AEs, vaccination-related SAEs, and potential immune-mediated diseases (pIMDs) were collected during the entire study period. Results: Safety was evaluated in 14,645 RZV and 14,660 placebo recipients. More RZV than placebo recipients reported unsolicited AEs (50.5% versus 32.0%); the difference was driven by transient injection site and solicited systemic reactions that were generally seen in the first week post-vaccination. The occurrence of overall SAEs (RZV: 10.1%; Placebo: 10.4%), fatal AEs (RZV: 4.3%; Placebo: 4.6%), and pIMDs (RZV: 1.2%; Placebo: 1.4%) was balanced between groups. The occurrence of possible exacerbations of pIMDs was rare and similar between groups. Overall, except for the expected local and systemic symptoms, the safety results were comparable between the RZV and Placebo groups irrespective of participant age, gender, or race. Conclusions: No safety concerns arose, supporting the favorable benefit-risk profile of RZV

    Safety profile of the adjuvanted recombinant zoster vaccine : Pooled analysis of two large randomised phase 3 trials

    Get PDF
    The ZOE-50 (NCT01165177) and ZOE-70 (NCT01165229) phase 3 clinical trials showed that the adjuvanted recombinant zoster vaccine (RZV) was ≥90% efficacious in preventing herpes zoster in adults. Here we present a comprehensive overview of the safety data from these studies. Adults aged ≥50 (ZOE-50) and ≥70 (ZOE-70) years were randomly vaccinated with RZV or placebo. Safety analyses were performed on the pooled total vaccinated cohort, consisting of participants receiving at least one dose of RZV or placebo. Solicited and unsolicited adverse events (AEs) were collected for 7 and 30 days after each vaccination, respectively. Serious AEs (SAEs) were collected from the first vaccination until 12 months post-last dose. Fatal AEs, vaccination-related SAEs, and potential immune-mediated diseases (pIMDs) were collected during the entire study period. Safety was evaluated in 14,645 RZV and 14,660 placebo recipients. More RZV than placebo recipients reported unsolicited AEs (50.5% versus 32.0%); the difference was driven by transient injection site and solicited systemic reactions that were generally seen in the first week post-vaccination. The occurrence of overall SAEs (RZV: 10.1%; Placebo: 10.4%), fatal AEs (RZV: 4.3%; Placebo: 4.6%), and pIMDs (RZV: 1.2%; Placebo: 1.4%) was balanced between groups. The occurrence of possible exacerbations of pIMDs was rare and similar between groups. Overall, except for the expected local and systemic symptoms, the safety results were comparable between the RZV and Placebo groups irrespective of participant age, gender, or race. No safety concerns arose, supporting the favorable benefit-risk profile of RZV
    corecore