99 research outputs found

    Formation and Thermal Stability of sub-10 nm Carbon Templates on Si(100)

    Full text link
    We report a lithographic process for creating high-resolution (<10 nm) carbon templates on Si(100). A scanning electron microscope, operating under low vacuum (10E-6 mbar), produces a carbon-containing deposit ("contamination resist") on the silicon surface via electron-stimulated dissociation of ambient hydrocarbons, water and other adsorbed molecules. Subsequent annealing at temperatures up to 1320 K in ultra-high vacuum removes SiO2 and other contaminants, with no observable change in dot shape. The annealed structures are compatible with subsequent growth of semiconductors and complex oxides. Carbon dots with diameter as low as 3.5 nm are obtained with a 200 us electron-beam exposure time.Comment: 13 pages, 4 figure

    Enhanced Out-of-plane Emission of K+ Mesons observed in Au+Au Collisions at 1 AGeV

    Full text link
    The azimuthal angular distribution of K+ mesons has been measured in Au + Au collisions at 1 AGeV. In peripheral and semi-central collisions, K+ mesons preferentially are emitted perpendicular to the reaction plane. The strength of the azimuthal anisotropy of K+ emission is comparable to the one of pions. No in-plane flow was found for K+ mesons near projectile and target rapidity.Comment: Accepted for publication in Phys. Rev.Let

    Development and Performance of the Nanoworkbench: A Four Tip STM for Electrical Conductivity Measurements Down to Sub-micrometer Scales

    Full text link
    A multiple-tip ultra-high vacuum (UHV) scanning tunneling microscope (MT-STM) with a scanning electron microscope (SEM) for imaging and molecular-beam epitaxy growth capabilities has been developed. This instrument (nanoworkbench) is used to perform four-point probe conductivity measurements at micrometer spatial dimension. The system is composed of four chambers, the multiple-tip STM/SEM chamber, a surface analysis and preparation chamber, a molecular-beam epitaxy chamber and a load-lock chamber for fast transfer of samples and probes. The four chambers are interconnected by a unique transfer system based on a sample box with integrated heating and temperature-measuring capabilities. We demonstrate the operation and the performance of the nanoworkbench with STM imaging on graphite and with four-point-probe conductivity measurements on a silicon-on-insulator (SOI) crystal. The creation of a local FET, whose dimension and localization are respectively determined by the spacing between the probes and their position on the SOI surface, is demonstrated.Comment: 39 pages, 15 figure

    Evaluating the impact of integrated development: are we asking the right questions? A systematic review [version 2; referees: 2 approved, 1 approved with reservations]

    Get PDF
    Background: Emerging global transformations - including a new Sustainable Development Agenda - are revealing increasingly interrelated goals and challenges, poised to be addressed by similarly integrated, multi-faceted solutions. Research to date has focused on determining the effectiveness of these approaches, yet a key question remains: are synergistic effects produced by integrating two or more sectors?  We systematically reviewed impact evaluations on integrated development interventions to assess whether synergistic, amplified impacts are being measured and evaluated. Methods: The International Initiative for Impact Evaluation’s (3ie) Impact Evaluation Repository comprised our sampling frame (n = 4,339). Following PRISMA guidelines, we employed a three-stage screening and review process. Results: We identified 601 journal articles that evaluated integrated interventions. Seventy percent used a randomized design to assess impact with regard to whether the intervention achieved its desired outcomes. Only 26 of these evaluations, however, used a full factorial design to statistically detect any synergistic effects produced by integrating sectors. Of those, seven showed synergistic effects. Conclusions: To date, evaluations of integrated development approaches have demonstrated positive impacts in numerous contexts, but gaps remain with regard to documenting whether integrated programming produces synergistic, amplified outcomes. Research on these program models needs to extend beyond impact only, and more explicitly examine and measure the synergies and efficiencies associated with linking two or more sectors. Doing so will be critical for identifying effective integrated development strategies that will help achieve the multi-sector SDG agenda

    Medium Effects in Kaon and Antikaon Production in Nuclear Collisions at Subthreshold Beam Energies

    Full text link
    Production cross sections of K+^+ and K^- mesons have been measured in C+C collisions at beam energies per nucleon below and near the nucleon-nucleon threshold. At a given beam energy, the spectral slopes of the K^- mesons are significantly steeper than the ones of the K+^+ mesons. The excitation functions for K+^+ and K^- mesons nearly coincide when correcting for the threshold energy. In contrast, the K+^+ yield exceeds the K^- yield by a factor of about 100 in proton-proton collisions at beam energies near the respective nucleon-nucleon thresholds.Comment: Accepted for publication in Phys. Rev. Let

    Predicting the impact of Lynch syndrome-causing missense mutations from structural calculations

    Get PDF
    Accurate methods to assess the pathogenicity of mutations are needed to fully leverage the possibilities of genome sequencing in diagnosis. Current data-driven and bioinformatics approaches are, however, limited by the large number of new variations found in each newly sequenced genome, and often do not provide direct mechanistic insight. Here we demonstrate, for the first time, that saturation mutagenesis, biophysical modeling and co-variation analysis, performed in silico, can predict the abundance, metabolic stability, and function of proteins inside living cells. As a model system, we selected the human mismatch repair protein, MSH2, where missense variants are known to cause the hereditary cancer predisposition disease, known as Lynch syndrome. We show that the majority of disease-causing MSH2 mutations give rise to folding defects and proteasome-dependent degradation rather than inherent loss of function, and accordingly our in silico modeling data accurately identifies disease-causing mutations and outperforms the traditionally used genetic disease predictors. Thus, in conclusion, in silico biophysical modeling should be considered for making genotype-phenotype predictions and for diagnosis of Lynch syndrome, and perhaps other hereditary diseases

    Azimuthally anisotropic emission of pions in symmetric heavy-ion collisions

    Get PDF
    Triple differential cross sections d3 sigma /dp3 for charged pions produced in symmetric heavy-ion collisions were measured with the KaoS magnetic spectrometer at the heavy-ion synchrotron facility SIS at GSI. The correlations between the momentum vectors of charged pions and the reaction plane in 197Au+197Au collisions at an incident energy of 1 GeV/nucleon were determined. We observe, for the first time, an azimuthally anisotropic distribution of pions, with enhanced emission perpendicular to the reaction plane. The anisotropy is most pronounced for pions of high transverse momentum in semicentral collisions

    Design for, and Evaluation of Life Cycle Performance

    No full text
    Project evaluation necessarily requires performance estimates over the project life cycle. In contrast to new and clean conditions, extended life performance inherently introduces additional complexity and variability in developing such estimates, due to changing operating environment, maintenance policies, operating procedures, equipment availabilities, etc. This paper discusses the general nature, and the thermal interaction of power plant components as individual equipment degradation occurs, describing overall plant performance trends and quantifying typical ranges for a given application. A specific cogeneration example will be discussed and the economic effects of life cycle performance with various plant design assumptions will be shown. Design considerations to minimize long term performance degradation will also be described
    corecore