3,751 research outputs found
Optical separation of mechanical strain from charge doping in graphene
Because of its superior stretchability, graphene exhibits rich structural deformation behaviours and its strain engineering has proven useful in modifying its electronic and magnetic properties. Despite the strain-sensitivity of the Raman G and 2D modes, the optical characterization of the native strain in graphene on silica substrates has been hampered by excess charges interfering with both modes. Here we show that the effects of strain and charges can be optically separated from each other by correlation analysis of the two modes, enabling simple quantification of both. Graphene with in-plane strain randomly occurring between -0.2% and 0.4% undergoes modest compression (-0.3%) and significant hole doping on thermal treatments. This study suggests that substrate-mediated mechanical strain is a ubiquitous phenomenon in two-dimensional materials. The proposed analysis will be of great use in characterizing graphene-based materials and devices.open11302307Nsciescopu
Effects of serum proteins on corrosion behavior of ISO 5832–9 alloy modified by titania coatings
Stainless steel ISO 5832–9 type is often used to
perform implants which operate in protein-containing physiological
environments. The interaction between proteins and
surface of the implant may affect its corrosive properties. The
aim of this work was to study the effect of selected serum
proteins (albumin and γ-globulins) on the corrosion of ISO
5832–9 alloy (trade name M30NW) which surface was modified
by titania coatings. These coatings were obtained by sol–
gel method and heated at temperatures of 400 and 800 °C. To
evaluate the effect of the proteins, the corrosion tests were
performed with and without the addition of proteins with
concentration of 1 g L−1 to the physiological saline solution
(0.9 % NaCl, pH 7.4) at 37 °C. The tests were carried out
within 7 days. The following electrochemical methods were
used: open circuit potential, linear polarization resistance, and
electrochemical impedance spectroscopy. In addition, surface
analysis by optical microscopy and X-ray photoelectron spectroscopy
(XPS) method was done at the end of weekly corrosion
tests. The results of corrosion tests showed that M30NW
alloy both uncoated and modified with titania coatings exhibits
a very good corrosion resistance during weekly exposition
to corrosion medium. The best corrosion resistance in
0.9 % NaCl solution is shown by alloy samples modified by
titania coating annealed at 400 °C. The serumproteins have no
significant effect onto corrosion of investigated biomedical
steel. The XPS results confirmed the presence of proteins on
the alloy surface after 7 days of immersion in proteincontaining
solutions.The investigations were supported by the National Science Centre project No. N N507 501339. The authors gratefully acknowledge Dr. Janusz
Sobczak and Dr. hab. Wojciech Lisowski from Institute of Physical
Chemistry of PAS for XPS surface analyses
New synchronization method for <i>Plasmodium falciparum</i>
<b>Background</b>: Plasmodium falciparum is usually asynchronous during in vitro culture. Although various synchronization methods are available, they are not able to narrow the range of ages of parasites. A newly developed method is described that allows synchronization of parasites to produce cultures with an age range as low as 30 minutes.
<b>Methods</b>: Trophozoites and schizonts are enriched using Plasmion. The enriched late stage parasites are immobilized as a monolayer onto plastic Petri dishes using concanavalin A. Uninfected erythrocytes are placed onto the monolayer for a limited time period, during which time schizonts on the monolayer rupture and the released merozoites invade the fresh erythrocytes. The overlay is then taken off into a culture flask, resulting in a highly synchronized population of parasites.
<b>Results</b>: Plasmion treatment results in a 10- to 13-fold enrichment of late stage parasites. The monolayer method results in highly synchronized cultures of parasites where invasion has occurred within a very limited time window, which can be as low as 30 minutes. The method is simple, requiring no specialized equipment and relatively cheap reagents.
<b>Conclusions</b>: The new method for parasite synchronization results in highly synchronized populations of parasites, which will be useful for studies of the parasite asexual cell cycle
Neural development features: Spatio-temporal development of the Caenorhabditis elegans neuronal network
The nematode Caenorhabditis elegans, with information on neural connectivity,
three-dimensional position and cell linage provides a unique system for
understanding the development of neural networks. Although C. elegans has been
widely studied in the past, we present the first statistical study from a
developmental perspective, with findings that raise interesting suggestions on
the establishment of long-distance connections and network hubs. Here, we
analyze the neuro-development for temporal and spatial features, using birth
times of neurons and their three-dimensional positions. Comparisons of growth
in C. elegans with random spatial network growth highlight two findings
relevant to neural network development. First, most neurons which are linked by
long-distance connections are born around the same time and early on,
suggesting the possibility of early contact or interaction between connected
neurons during development. Second, early-born neurons are more highly
connected (tendency to form hubs) than later born neurons. This indicates that
the longer time frame available to them might underlie high connectivity. Both
outcomes are not observed for random connection formation. The study finds that
around one-third of electrically coupled long-range connections are late
forming, raising the question of what mechanisms are involved in ensuring their
accuracy, particularly in light of the extremely invariant connectivity
observed in C. elegans. In conclusion, the sequence of neural network
development highlights the possibility of early contact or interaction in
securing long-distance and high-degree connectivity
Rapid generation of chromosome-specific alphoid DNA probes using the polymerase chain reaction
Non-isotopic in situ hybridization of chromosome-specific alphoid DNA probes has become a potent tool in the study of numerical aberrations of specific human chromosomes at all stages of the cell cycle. In this paper, we describe approaches for the rapid generation of such probes using the polymerase chain reaction (PCR), and demonstrate their chromosome specificity by fluorescence in situ hybridization to normal human metaphase spreads and interphase nuclei. Oligonucleotide primers for conserved regions of the alpha satellite monomer were used to generate chromosome-specific DNA probes from somatic hybrid cells containing various human chromosomes, and from DNA libraries from sorted human chromosomes. Oligonucleotide primers for chromosome-specific regions of the alpha satellite monomer were used to generate specific DNA probes for the pericentromeric heterochromatin of human chromosomes 1, 6, 7, 17 and X directly from human genomic DNA
Detection of chromosome aberrations in the human interphase nucleus by visualization of specific target DNAs with radioactive and non-radioactive in situ hybridization techniques: diagnosis of trisomy 18 with probe L1.84
The localization of chromosome 18 in human interphase nuclei is demonstrated by use of radioactive and nonradioactive in situ hybridization techniques with a DNA clone designated L1.84. This clone represents a distinct subpopulation of the repetitive human alphoid DNA family, located in the centric region of chromosome 18. Under stringent hybridization conditions hybridization of L1.84 is restricted to chromosome 18 and reflects the number of these chromosomes present in the nuclei, namely, two in normal diploid human cells and three in nuclei from cells with trisomy 18. Under conditions of low stringency, cross-hybridization with other subpopulations of the alphoid DNA family occurs in the centromeric regions of the whole chromosome complement, and numerous hybridization sites are detected over interphase nuclei. Detection of chromosome-specific target DNAs by non-radioactive in situ hybridization with appropriate DNA probes cloned from individual chromosomal subregions presents a rapid means of identifying directly numerical or even structural chromosome aberrations in the interphase nucleus. Present limitations and future applications of interphase cytogenetics are discussed
Why Some Interfaces Cannot be Sharp
A central goal of modern materials physics and nanoscience is control of
materials and their interfaces to atomic dimensions. For interfaces between
polar and non-polar layers, this goal is thwarted by a polar catastrophe that
forces an interfacial reconstruction. In traditional semiconductors this
reconstruction is achieved by an atomic disordering and stoichiometry change at
the interface, but in multivalent oxides a new option is available: if the
electrons can move, the atoms don`t have to. Using atomic-scale electron energy
loss spectroscopy we find that there is a fundamental asymmetry between
ionically and electronically compensated interfaces, both in interfacial
sharpness and carrier density. This suggests a general strategy to design sharp
interfaces, remove interfacial screening charges, control the band offset, and
hence dramatically improving the performance of oxide devices.Comment: 12 pages of text, 6 figure
Effect of correlations on network controllability
A dynamical system is controllable if by imposing appropriate external
signals on a subset of its nodes, it can be driven from any initial state to
any desired state in finite time. Here we study the impact of various network
characteristics on the minimal number of driver nodes required to control a
network. We find that clustering and modularity have no discernible impact, but
the symmetries of the underlying matching problem can produce linear, quadratic
or no dependence on degree correlation coefficients, depending on the nature of
the underlying correlations. The results are supported by numerical simulations
and help narrow the observed gap between the predicted and the observed number
of driver nodes in real networks
Protective role of vitamin B6 (PLP) against DNA damage in Drosophila models of type 2 diabetes
Growing evidence shows that improper intake of vitamin B6 increases cancer risk and several studies indicate that diabetic patients have a higher risk of developing tumors. We previously demonstrated that in Drosophila the deficiency of Pyridoxal 5' phosphate (PLP), the active form of vitamin B6, causes chromosome aberrations (CABs), one of cancer prerequisites, and increases hemolymph glucose content. Starting from these data we asked if it was possible to provide a link between the aforementioned studies. Thus, we tested the effect of low PLP levels on DNA integrity in diabetic cells. To this aim we generated two Drosophila models of type 2 diabetes, the first by impairing insulin signaling and the second by rearing flies in high sugar diet. We showed that glucose treatment induced CABs in diabetic individuals but not in controls. More interestingly, PLP deficiency caused high frequencies of CABs in both diabetic models demonstrating that hyperglycemia, combined to reduced PLP level, impairs DNA integrity. PLP-depleted diabetic cells accumulated Advanced Glycation End products (AGEs) that largely contribute to CABs as α-lipoic acid, an AGE inhibitor, rescued not only AGEs but also CABs. These data, extrapolated to humans, indicate that low PLP levels, impacting on DNA integrity, may be considered one of the possible links between diabetes and cancer
Enrichment analysis of Alu elements with different spatial chromatin proximity in the human genome
Transposable elements (TEs) have no longer been totally considered as “junk DNA” for quite a time since the continual discoveries of their multifunctional roles in eukaryote genomes. As one of the most important and abundant TEs that still active in human genome, Alu, a SINE family, has demonstrated its indispensable regulatory functions at sequence level, but its spatial roles are still unclear. Technologies based on 3C(chromosomeconformation capture) have revealed the mysterious three-dimensional structure of chromatin, and make it possible to study the distal chromatin interaction in the genome. To find the role TE
playing in distal regulation in human genome, we compiled the new released Hi-C data, TE annotation, histone marker annotations, and the genome-wide methylation data to operate correlation analysis, and found that the density of Alu elements showed a strong positive correlation with the level of chromatin interactions (hESC: r=0.9, P<2.2×1016; IMR90 fibroblasts: r = 0.94, P < 2.2 × 1016) and also have a significant positive correlation withsomeremote functional DNA elements like enhancers and promoters (Enhancer: hESC: r=0.997, P=2.3×10−4; IMR90: r=0.934, P=2×10−2; Promoter: hESC: r = 0.995, P = 3.8 × 10−4; IMR90: r = 0.996, P = 3.2 × 10−4). Further investigation involving GC content and methylation status showed the GC content of Alu covered sequences shared a similar pattern with that of the overall sequence, suggesting that Alu elements also function as the GC nucleotide and CpG site provider. In all, our results suggest that the Alu elements may act as an alternative parameter to evaluate the Hi-C data, which is confirmed by the correlation analysis of Alu elements and histone markers. Moreover, the GC-rich Alu sequence can bring high GC content and methylation flexibility to the regions with more distal chromatin contact, regulating the transcription of tissue-specific genes
- …
