678 research outputs found

    Overlap of convex polytopes under rigid motion

    Get PDF
    We present an algorithm to compute a rigid motion that approximately maximizes the volume of the intersection of two convex polytopes P-1 and P-2 in R-3. For all epsilon is an element of (0, 1/2] and for all n >= 1/epsilon, our algorithm runs in O(epsilon(-3) n log(3.5) n) time with probability 1 - n(-O(1)). The volume of the intersection guaranteed by the output rigid motion is a (1 - epsilon)-approximation of the optimum, provided that the optimum is at least lambda . max{vertical bar P-1 vertical bar . vertical bar P-2 vertical bar} for some given constant lambda is an element of (0, 1]. (C) 2013 Elsevier B.V. All rights reserved.X1155Ysciescopu

    Physiological Functions of the COPI Complex in Higher Plants

    Get PDF
    COPI vesicles are essential to the retrograde transport of proteins in the early secretory pathway. The COPI coatomer complex consists of seven subunits, termed alpha-, beta-, beta'-, gamma-, delta-, epsilon-, and zeta-COP, in yeast and mammals. Plant genomes have homologs of these subunits, but the essentiality of their cellular functions has hampered the functional characterization of the subunit genes in plants. Here we have employed virus-induced gene silencing (VIGS) and dexamethasone (DEX)-inducible RNAI of the COPI subunit genes to study the in vivo functions of the COPI coatomer complex in plants. The beta'-, gamma-, and delta-COP subunits localized to the Golgi as GFP-fusion proteins and interacted with each other in the Golgi. Silencing of beta'-, gamma-, and delta-COP by VIGS resulted in growth arrest and acute plant death in Nicotiana benthamiana, with the affected leaf cells exhibiting morphological markers of programmed cell death. Depletion of the COPI subunits resulted in disruption of the Golgi structure and accumulation of autolysosome-like structures in earlier stages of gene silencing. In tobacco BY-2 cells, DEX-inducible RNAi of beta'-COP caused aberrant cell plate formation during cytokinesis. Collectively, these results suggest that COPI vesicles are essential to plant growth and survival by maintaining the Golgi apparatus and modulating cell plate formation.1196Ysciescopu

    Functional water flow pathways and hydraulic regulation in the xylem network of arabidopsis

    Get PDF
    In vascular plants, the xylem network constitutes a complex microfluidic system. The relationship between vascular network architecture and functional hydraulic regulation during actual water flow remains unexplored. Here, we developed a method to visualize individual xylem vessels of the 3D xylem network of Arabidopsis thaliana, and to analyze the functional activities of these vessels using synchrotron X-ray computed tomography with hydrophilic gold nanoparticles as flow tracers. We show how the organization of the xylem network changes dynamically throughout the plant, and reveal how the elementary units of this transport system are organized to ensure both long-distance axial water transport and local lateral water transport. Xylem vessels form distinct clusters that operate as functional units, and the activity of these units, which determines water flow pathways, is modulated not only by varying the number and size of xylem vessels, but also by altering their interconnectivity and spatial arrangement. Based on these findings, we propose a regulatory model of water transport that ensures hydraulic efficiency and safety.X1111Ysciescopu

    Value-added Synthesis of Graphene: Recycling Industrial Carbon Waste into Electrodes for High-Performance Electronic Devices

    Get PDF
    We have developed a simple, scalable, transfer-free, ecologically sustainable, value-added method to convert inexpensive coal tar pitch to patterned graphene films directly on device substrates. The method, which does not require an additional transfer process, enables direct growth of graphene films on device substrates in large area. To demonstrate the practical applications of the graphene films, we used the patterned graphene grown on a dielectric substrate directly as electrodes of bottom-contact pentacene field-effect transistors (max. field effect mobility similar to 0.36 cm(2).V-1.s(-1)), without using any physical transfer process. This use of a chemical waste product as a solid carbon source instead of commonly used explosive hydrocarbon gas sources for graphene synthesis has the dual benefits of converting the waste to a valuable product, and reducing pollution.111714Ysciescopu

    Where to from here? A quality improvement project investigating burns treatment and rehabilitation practices in India

    Get PDF
    Abstract Objective To describe the capacity of the Indian healthcare system in providing appropriate and effective burns treatment and rehabilitation services. Results Health professionals involved in burns treatment or rehabilitation at seven hospitals from four states in India were invited to participate in consultative meetings. Existing treatment and rehabilitation strategies, barriers and enablers to patient flow across the continuum of care and details on inpatient and outpatient rehabilitation were discussed during the meetings. Seventeen health professionals from various clinical backgrounds were involved in the consultation process. Key themes highlighted (a) a lack of awareness on burn first aid at the community level, (b) a lack of human resource to treat burn injuries in hospital settings, (c) a gap in burn care training for medical staff, (d) poor hospital infrastructure and (e) a variation in treatment practices and rehabilitation services available between hospitals. A number of opportunities exist to improve burns treatment and rehabilitation in India. Improvements would most effectively be achieved through promoting multidisciplinary care across a number of facilities and service providers. Further research is required to develop context-specific burn care models, determining how these can be integrated into the Indian healthcare system

    Optimized intermolecular potential for nitriles based on Anisotropic United Atoms model

    Get PDF
    An extension of the Anisotropic United Atoms intermolecular potential model is proposed for nitriles. The electrostatic part of the intermolecular potential is calculated using atomic charges obtained by a simple Mulliken population analysis. The repulsion-dispersion interaction parameters for methyl and methylene groups are taken from transferable AUA4 literature parameters [Ungerer et al., J. Chem. Phys., 2000, 112, 5499]. Non-bonding Lennard-Jones intermolecular potential parameters are regressed for the carbon and nitrogen atoms of the nitrile group (–C≡N) from experimental vapor-liquid equilibrium data of acetonitrile. Gibbs Ensemble Monte Carlo simulations and experimental data agreement is very good for acetonitrile, and better than previous molecular potential proposed by Hloucha et al. [J. Chem. Phys., 2000, 113, 5401]. The transferability of the resulting potential is then successfully tested, without any further readjustment, to predict vapor-liquid phase equilibrium of propionitrile and n-butyronitrile

    Plumbagin inhibits invasion and migration of breast and gastric cancer cells by downregulating the expression of chemokine receptor CXCR4

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increasing evidence indicates that the interaction between the CXC chemokine receptor-4 (CXCR4) and its ligand CXCL12 is critical in the process of metastasis that accounts for more than 90% of cancer-related deaths. Thus, novel agents that can downregulate the CXCR4/CXCL12 axis have therapeutic potential in inhibiting cancer metastasis.</p> <p>Methods</p> <p>In this report, we investigated the potential of an agent, plumbagin (5-hydroxy-2-methyl-1, 4-naphthoquinone), for its ability to modulate CXCR4 expression and function in various tumor cells using Western blot analysis, DNA binding assay, transient transfection, real time PCR analysis, chromatin immunoprecipitation, and cellular migration and invasion assays.</p> <p>Results</p> <p>We found that plumbagin downregulated the expression of CXCR4 in breast cancer cells irrespective of their HER2 status. The decrease in CXCR4 expression induced by plumbagin was not cell type-specific as the inhibition also occurred in gastric, lung, renal, oral, and hepatocellular tumor cell lines. Neither proteasome inhibition nor lysosomal stabilization had any effect on plumbagin-induced decrease in CXCR4 expression. Detailed study of the underlying molecular mechanism(s) revealed that the regulation of the downregulation of CXCR4 was at the transcriptional level, as indicated by downregulation of mRNA expression, inhibition of NF-κB activation, and suppression of chromatin immunoprecipitation activity. In addition, using a virtual, predictive, functional proteomics-based tumor pathway platform, we tested the hypothesis that NF-κB inhibition by plumbagin causes the decrease in CXCR4 and other metastatic genes. Suppression of CXCR4 expression by plumbagin was found to correlate with the inhibition of CXCL12-induced migration and invasion of both breast and gastric cancer cells.</p> <p>Conclusions</p> <p>Overall, our results indicate, for the first time, that plumbagin is a novel blocker of CXCR4 expression and thus has the potential to suppress metastasis of cancer.</p

    Can Phlorotannins Purified Extracts Constitute a Novel Pharmacological Alternative for Microbial Infections with Associated Inflammatory Conditions?

    Get PDF
    Bacterial and fungal infections and the emerging multidrug resistance are driving interest in fighting these microorganisms with natural products, which have generally been considered complementary to pharmacological therapies. Phlorotannins are polyphenols restricted to brown seaweeds, recognized for their biological capacity. This study represents the first research on the antibacterial, antifungal, anti-inflammatory and antioxidant activity of phlorotannins purified extracts, which were obtained from ten dominant brown seaweeds of the occidental Portuguese coast

    Neutrophils in cancer: neutral no more

    Get PDF
    Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets
    corecore