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We present an algorithm to compute a rigid motion that approximately maximizes the
volume of the intersection of two convex polytopes P1 and P2 in R

3. For all ε ∈
(0,1/2] and for all n � 1/ε, our algorithm runs in O (ε−3n log3.5 n) time with probability
1 − n−O (1) . The volume of the intersection guaranteed by the output rigid motion is a (1 −
ε)-approximation of the optimum, provided that the optimum is at least λ · max{|P1|, |P2|}
for some given constant λ ∈ (0,1].

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Shape matching is a common task in many object recognition problems. A translation or rigid motion of one shape is
sought that maximizes some similarity measure with another shape. Convex shape matching algorithms have been used in
tracking regions in an image sequence [10] and measuring symmetry of a convex body [8]. We define the overlap of two
convex shapes to be the volume of their intersection, which is a robust similarity measure [12]. In this paper, we consider
the problem of finding the maximum overlap of two convex polytopes in R

3 under rigid motion.
Efficient algorithms have been developed for two convex n-gons in the plane. De Berg et al. [5] developed an algorithm

to find the maximum overlap of two convex polygons under translation in O (n log n) time. Ahn et al. [4] presented two
algorithms to find a (1 − ε)-approximate maximum overlap, one for the translation case and another for the rigid motion
case. They assume that the polygon vertices are stored in arrays in clockwise order around the polygon boundaries. Ahn
et al.’s algorithms run in O (ε−1 logn + ε−1 log(1/ε)) time for the translation case and O (ε−1 log n + ε−2 log(1/ε)) time
for the rigid motion case. Cheong et al. [7] gave an algorithm to align two simple polygons P1 and P2 by a rigid motion
so that their overlap is at least the optimum minus ε · min{|P1|, |P2|}. The running time is O ((n3/ε8) log5 n). Cheng and
Lam [6] recently improved the running time to O ((n3/ε4) log5/3 n log5/3 n

ε ). Finding the exact maximum overlap under rigid
motion seems difficult. A brute force approach is to subdivide the space of rigid motion (−π,π ] × R

2 into cells so that
the intersecting pairs of polygon edges do not change within a cell. The hope is to obtain a formula for the maximum
overlap within a cell as the intersection does not change combinatorially, and then compute the maximum of the formula.
Unfortunately, the subdivision of (−π,π ] × R

2 has curved edges and facets. Also the formula is a sum of a large number
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of fractions, and optimizing the formula seems to require solving a high-degree polynomial system. These issues make it a
challenge to optimize the formula in a cell.

Fewer algorithmic results are known concerning the maximum overlap of two convex polytopes in R
d for d � 3. Let n

be the number of hyperplanes defining the convex polytopes. Ahn et al. [2] developed an algorithm to find the maximum
overlap of two convex polytopes under translation in O (n(d+1−3/d)�d/2� logd+1 n) expected time. Recently, Ahn, Cheng and
Reinbacher [3] have obtained substantially faster algorithms to align two convex polytopes under translation in R

d for d � 3.
The overlap computed is no less than the optimum minus μ, where μ is any small constant fixed in advance. The running
times are O (n log3.5 n) for R3 and O (n�d/2�+1 logd n) for d � 4, and these time bounds hold with probability 1−n−O (1) . There
is no specific prior result concerning the maximum overlap of convex polytopes under rigid motion. Vigneron [13] studied
the optimization of algebraic functions and one of the applications is the alignment of two possibly non-convex polytopes
under rigid motion. For any ε ∈ (0,1) and any two convex polytopes with n defining hyperplanes, Vigneron’s method can
return in O (ε−Θ(d2)nΘ(d3)(log n

ε )Θ(d2)) time an overlap under rigid motion that is at least 1 − ε times the optimum. Finding
the exact overlap is even more challenging in R

3.
In this paper, we present a new algorithm to approximate the maximum overlap of two convex polytopes P1 and P2

in R
3 under rigid motion. For the purpose of shape matching, it often suffices to know that two input shapes are very

dissimilar if this is the case. Therefore, we are only interested in matching P1 and P2 when their maximum overlap under
rigid motion is at least λ ·max{|P1|, |P2|} for some given constant λ ∈ (0,1], where |Pi | denotes the volume of Pi . Under this
assumption, for all ε ∈ (0,1/2] and for all n � 1/ε, our algorithm runs in O (ε−3n log3.5 n) time with probability 1 − n−O (1)

and returns a rigid motion that achieves a (1−ε)-approximate maximum overlap. The assumption can be verified as follows.
Run our algorithm using λ/2 instead of λ. Check if the overlap output by our algorithm is at least (1 − ε)λ · max{|P1|, |P2|}.
If not, we know that the assumption is not satisfied. If yes, the maximum overlap is at least (λ/2) · max{|P1|, |P2|} and our
algorithm’s output is a (1 − ε)-approximation because we used λ/2 in running the algorithm. Our high-level strategy has
two steps. First, sample a set of rotations. Second, for each sampled rotation, apply it and then apply the almost optimal
translation computed by Ahn et al.’s algorithm [3]. Finally, return the best answer among all rigid motions tried.

If one uses a very fine uniform discretization of the rotation space, it is conceptually not difficult to sample rotations so
that the resulting approximation is good. The problem is that such a discretization inevitably leads to a running time that
depends on some geometric parameters of P1 and P2. In order to obtain a running time that depends on n and ε only, we
cannot use a uniform discretization of the entire rotation space. Indeed, our contribution lies in establishing some structural
properties that allow us to discretize a small subset of the rotation space, and exploiting this discretization in the analysis
to prove the desired approximation. This approach is also taken in the 2D case in [4], but our analysis is not an extension
of that in [4] as the three-dimensional situation is very different.

2. Similar polytopes

In this section, we show that P1 and P2 are “similar” under the assumption that their maximum overlap is at least
λ · max{|P1|, |P2|}. We use the Löwner–John ellipsoid [11] to identify three axes of P1 and P2. For every convex body P
in R

d , it is proven by Löwner that there is a unique smallest ellipsoid E that contains P . Then John proved that 1
d E is

contained in P . There are various algorithms for finding an ellipsoid of this flavor.

Lemma 1. (See [11].) Let P be a convex body with m vertices in R
3 . For every η > 0, an ellipsoid E(P ) can be computed in O (m/η)

time such that 1
3(1+η)

E(P ) ⊂ P ⊂ E(P ).

For i ∈ {1,2}, we use E(Pi) to denote the ellipsoid guaranteed by Lemma 1 for Pi , using the setting of η = 1/3. There
are three mutually orthogonal directed lines αi , βi and γi through the center of E(Pi) such that |αi ∩E(Pi)| and |γi ∩E(Pi)|
are the shortest and longest, respectively, among all possible directed lines through the center of E(Pi). After fixing αi and
γi , there are two choices for βi and any one will do. We call these directed lines the αi -, βi -, and γi -axes of Pi . The lengths
ai = |αi ∩ E(Pi)|, bi = |βi ∩ E(Pi)|, and ci = |γi ∩ E(Pi)| are the three principal diameters of E(Pi). Notice that ai � bi � ci .
Define amin = min{a1,a2}, bmin = min{b1,b2}, and cmin = min{c1, c2}. The following result gives an upper bound on the
maximum overlap of P1 and P2.

Lemma 2. For i ∈ {1,2}, let Ri be a box with side lengths ai , bi , and ci . The maximum overlap of R1 and R2 under rigid motion is at
most

√
2aminbmincmin .

Proof. Without loss of generality, we suppose that a1 is amin, that is, a1 � a2. If bmin = b1 and cmin = c1, then the maximum
overlap of R1 and R2 under rigid motion is |R1| = aminbmincmin. There are three cases left: (1) bmin = b2 and cmin = c2,
(2) bmin = b1 and cmin = c2, and (3) bmin = b2 and cmin = c1. For i ∈ {1,2}, let the ab-plane of Ri be the plane through the
center of Ri and parallel to the facets of side lengths ai and bi . The bc-plane and ac-plane of Ri are defined analogously.
Let Lab

i be the line through the center of Ri and perpendicular to the ab-plane of Ri . The lines Lbc
i and Lac

i are defined
analogously. In the rest of the proof, assume that R1 and R2 have been placed such that their overlap is maximum.
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Fig. 1. Illustrations for the proof of Lemma 2.

Case 1. bmin = b2 and cmin = c2. Let θ be the nonobtuse angle between Lbc
1 and Lab

2 . Suppose that θ � π/4. Refer to Fig. 1(a).
Consider the two facets of R1 that are parallel to its bc-plane. The supporting planes of these two facets bound an infinite
slab with thickness a1. Consider the facets of R2 that are parallel to its ab-plane. Sweeping these two facets along Lab

2
produces an infinite rectangular cylinder. The intersection of the slab and the cylinder is a parallelepiped that contains
R1 ∩ R2, so it suffices to bound the volume of this parallelepiped. We rotate the cylinder around Lab

2 so that its facets
with width b2 make an angle θ with the ab-plane of R1. Note that the volume of the parallelepiped is not changed by
this rotation. The parallelepiped’s volume is a1a2b2/ cos θ � a1b2c2/ cos θ �

√
2aminbmincmin. Suppose that θ > π/4. Refer

to Fig. 1(b). The angle between Lbc
1 and Lbc

2 is π/2 − θ . We keep the same infinite slab as in the above. We sweep the
two facets of R2 that are parallel to its bc-plane along Lbc

2 to obtain an infinite rectangular cylinder. The volume of the
parallelepiped at the intersection of the slab and this new cylinder is a1b2c2/ cos(π/2 − θ) �

√
2aminbmincmin.

Case 2. bmin = b1 and cmin = c2. Let θ be the nonobtuse angle between Lab
1 and Lab

2 . Suppose that θ � π/4. Refer to Fig. 1(c).
Consider the two facets of R2 that are parallel to its ab-plane. The supporting planes of these two facets bound an infinite
slab with thickness c2. Consider the facets of R1 that are parallel to its ab-plane. Sweeping these two facets along Lab

1
produces an infinite rectangular cylinder. As in case 1, we rotate the cylinder around Lab

1 so that its facets with width b1
make an angle θ with the ac-plane of R2. The intersection of the slab and the cylinder is a parallelepiped that contains
R1 ∩ R2, and the parallelepiped’s volume is a1b1c2/ cos θ �

√
2aminbmincmin. Suppose that θ > π/4. Refer to Fig. 1(d). The

angle between Lab
1 and Lac

2 is π/2 − θ < π/4. We replace the slab by the slab bounded above by facets of R2 that are
parallel to its ac-plane. R1 ∩ R2 is contained in the parallelepiped at the intersection of the new slab and the cylinder,
whose volume is at most a1b1b2/ cos(π/2 − θ) � a1b1c2/cos(π/2 − θ) �

√
2aminbmincmin.

Case 3. bmin = b2 and cmin = c1. Let θ be the nonobtuse angle between Lac
1 and Lac

2 . Sweep the facets of R1 that are parallel
to its ac-plane along Lac to obtain an infinite cylinder. We rotate the cylinder around Lac so that its facets with width c1
1 1
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make an angle θ with the bc-plane of R2. If θ � π/4, take the slab bounded by the facets of R2 that are parallel to its
ac-plane. Refer to Fig. 1(e). If θ > π/4, take the slab bounded by the facets of R2 that are parallel to its bc-plane. Refer to
Fig. 1(f). Then, we can argue as in case 2 that |R1 ∩ R2| �

√
2aminbmincmin. �

We are ready to show that P1 and P2 are similar in the sense that the respective principal diameters are within a
constant factor of each other.

Lemma 3. If the maximum overlap of P1 and P2 under rigid motion is λ · max{|P1|, |P2|} or more, then the ratios a1/a2 , b1/b2 , and
c1/c2 are between λ/(27

√
2) and 27

√
2/λ.

Proof. It follows from Lemma 1 that for i ∈ {1,2}, |Pi | � 4
3 π · 2−33−3(1 + η)−3 · aibici . Since we set η = 1/3 to com-

pute E(Pi), we obtain |Pi| � 4
3 π · 2−34−3 · aibici . The maximum overlap of P1 and P2 under rigid motion is at most√

2aminbmincmin by Lemma 2. Thus,
√

2aminbmincmin � λ|Pi | � (3/π) · λ|Pi | � λaibici/27. It follows that

a1/a2 �
(
27

√
2/λ

) · (bmin/b1) · (cmin/c1) � 27
√

2/λ

a1/a2 �
(
λ/

(
27

√
2
)) · (b2/bmin) · (c2/cmin)� λ/

(
27

√
2
)

We can similarly show that the ratios b1/b2 and c1/c2 are between λ/(27
√

2) and 27
√

2/λ. �
3. Sampling rigid motions

A rigid motion can be viewed as a rotation of P1 and P2 followed by a translation of P2. A rotation is a relative motion
between P1 and P2, and indeed, it is more convenient to rotate both P1 and P2 for our purposes. We set the initial positions
of P1 and P2 so that the centers of E(P1) and E(P2) coincide and the α1- and α2-axes, β1- and β2-axes, and the γ1- and
γ2-axes are aligned, respectively.

A rotation R∗ is decomposed into three simpler rotations Rβ , Rα , and Rγ parametrized by three angles θβ, θα, θγ ∈
(−π,π ], respectively, such that Rγ (Rβ(P1)) is the image of P1 under R∗ and Rα(P2) is the image of P2 under R∗ . The
detailed specification of R∗ is as follows. Let 	 (u, v) denote the angle between two oriented axes u and v .

1. Rotate P1 around the β1-axis clockwise by the angle θβ as viewed from infinity in β1’s direction. This is the rotation
Rβ which fixes the angle 	 (Rβ(γ1),α2).

2. Rotate P2 around the α2-axis clockwise by the angle θα as viewed from infinity in α2’s direction. This is the rotation
Rα which fixes the angle 	 (Rβ(γ1), Rα(β2)). Note that 	 (Rβ(γ1), Rα(α2)) = 	 (Rβ(γ1),α2), i.e., Rα does not affect
	 (Rβ(γ1),α2).

3. Rotate Rβ(P1) around Rβ(γ1) clockwise by the angle θγ as viewed from infinity in the direction of Rβ(γ1). This is the
rotation Rγ . Note that 	 (Rγ (Rβ(γ1)),α2) = 	 (Rβ(γ1),α2) and 	 (Rγ (Rβ(γ1)), Rα(β2)) = 	 (Rβ(γ1), Rα(β2)), i.e., Rγ

does not affect 	 (Rβ(γ1),α2) and 	 (Rβ(γ1), Rα(β2)).

The order of the applications of Rβ , Rα and Rγ matters—the result of applying Rβ , Rα and Rγ in this order can differ from
the result of applying the same three rotations in another order.

The next result restricts the ranges of θβ , θα , and θγ that contain the optimal rotation.

Lemma 4. Let P1 and P2 be two convex polytopes in R
3 . Let R̊∗ be the rotation part of an optimal rigid motion that maximizes the

overlap of P1 and P2 . Let θ̊β , θ̊α and θ̊γ be the three angles in the representation of R̊∗ . If 2203amin � λ2cmin/
√

2, then

| sin θ̊β | � 2203amin

λ2cmin
, | sin θ̊α |� 2203

√
2bmin

λ2cmin
, | sin θ̊γ |� 2203amin

λ2bmin
.

Proof. By Lemma 1 and the setting of η = 1/3, if we position P1 and P2 such that the centers of E(P1) and E(P2)

coincide and the respective axes of P1 and P2 are aligned, then P1 ∩ P2 contains an ellipsoid with principal diameters
amin/4, bmin/4, and cmin/4. Let T̊ denote the translation part of the optimal rigid motion. Thus, |R̊γ (R̊β(P1))∩ T̊ (R̊α(P2))|�
4πaminbmincmin/(293).

Enclose E(P1) in an infinite elliptic cylinder C such that the base of C has principal diameters a1 and b1, and the axis
of C is aligned with the γ1-axis of P1. Enclose E(P2) with an infinite slab S that has thickness a2 and is parallel to the
β2γ2-plane. Refer to Fig. 2(a). When we apply R̊∗ , we get |R̊γ (R̊β(P1)) ∩ R̊α(P2)| � |R̊γ (R̊β(C)) ∩ R̊α(S)|. Only R̊β has an
effect on |R̊γ (R̊β(C)) ∩ R̊α(S)| because R̊α does not change the shape of the intersection, and R̊γ does not change the
volume of the intersection as long as θ̊β /∈ {0,π}. The base area and height of R̊γ (R̊β(C)) ∩ R̊α(S) are πa1b1/(22| sin θ̊β |)
and a2, respectively. Therefore, |R̊γ (R̊β(C)) ∩ R̊α(S)| = πa1a2b1/(22| sin θ̊β |). Applying the translation T̊ to R̊α(S) has no
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Fig. 2. (a) Bounding | sin θ̊β |. (b) Bounding | sin θ̊α |. (c) Effect of Rβ . (d) The shaded patch indicates the plane spanned by α2 and Rα(γ2). Rα makes Rβ (γ1)

tilt at an angle ϕ to this plane. (e) Bounding | sin θ̊γ |.

impact on the intersection volume. Therefore, |R̊γ (R̊β(C)) ∩ R̊α(S)| � |R̊γ (R̊β(P1)) ∩ T̊ (R̊α(P2))| � 4πaminbmincmin/(293).
We conclude that

4π

293
aminbmincmin � π

22| sin θ̊β |a1a2b1

and therefore

| sin θ̊β | � 253a1a2b1

aminbmincmin
� 2203amin

λ2cmin
.

The last inequality follows from Lemma 3.
The assumption of 2203amin � λ2cmin/

√
2 is needed in bounding | sin θ̊α |. This assumption implies that | sin θ̊β | � 1/

√
2

and, therefore, θ̊β ∈ (−π,−3π/4] ∪ [−π/4,π/4] ∪ [3π/4,π ]. To bound | sin θ̊α |, we similarly enclose E(P1) with an infinite
elliptic cylinder C and E(P2) with a slab S , except that we swap the positions of αi and βi . The thickness of the slab S
enclosing E(P2) is thus b2. Fig. 2(b) gives an illustration. Refer to Fig. 2(c). Rβ rotates P1 around the β1-axis by the angle
θ̊β and the angle between α2 and Rβ(γ1) will not be changed by Rα . Refer to Fig. 2(d). Rα makes C tilt at a nonobtuse
angle ϕ to S , while Rγ has no effect on the volume of the intersection of C and S as long as θ̊α /∈ {0,π}. Note that ϕ is
the nonobtuse angle between Rβ(γ1) and the plane spanned by α2 and Rα(γ2). The maximum value of sinϕ is | sin θ̊α |
when θ̊β = 0 or π . The minimum value of sinϕ is attained when θ̊β = ±π/4 or ±3π/4, and by elementary trigonometry,
the minimum value of sinϕ is | sin θ̊α |/√2. Using an analysis similar to that for θ̊β , we obtain |R̊γ (R̊β(C)) ∩ R̊α(S)| =
πa1b1b2/(22 sinϕ) � πa1b1b2/(2

√
2| sin θ̊α |). Therefore,
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4π

293
aminbmincmin � π

2
√

2| sin θ̊α |a1b1b2

and

| sin θ̊α | � 263a1b1b2√
2aminbmincmin

� 2203
√

2bmin

λ2cmin
.

The analysis for bounding | sin θ̊γ | is similar. We enclose E(P1) with an infinite elliptic cylinder C and E(P2) with a slab
S as shown in Fig. 2(e). The thickness of S is a2. Rβ has no effect on the volume of the intersection of C and S as long as
θ̊γ /∈ {0,π}, and Rα does not change the shape of intersection of C and S . Rγ makes C tilt at an angle θ̊γ to S . Therefore,
|R̊γ (R̊β(C)) ∩ R̊α(S)| = πa1a2c1/(22| sin θ̊γ |). Therefore,

4π

293
aminbmincmin � π

22| sin θ̊γ |a1a2c1

and

| sin θ̊γ | � 253a1a2c1

aminbmincmin
� 2203amin

λ2bmin
. �

By Lemma 4, if 2203amin � λ2cmin/
√

2, then θβ , θα and θγ can only vary in some appropriate subsets of (−π,π ]. This
allows us to discretize only a small subset of (−π,π ] in designing our approximation algorithm, which helps reducing the
running time. If 2203amin > λ2cmin/

√
2, the lengths ai , bi and ci are within constant factors of each other, and it suffices to

discretize the range (−π,π ] uniformly in this case. In the following, we define the angular ranges Iβ , Iα and Iγ for θβ , θα

and θγ respectively, and then discuss how to discretize these ranges.

• If 2203amin > λ2cmin/
√

2, then Iβ = Iα = Iγ = (−π,π ].
• If 2203amin � λ2cmin/

√
2, then for all ξ ∈ {β,α,γ },

Iξ = (−π,−π + fξ ] ∪ [− fξ , fξ ] ∪ [π − fξ ,π ],
where:
– fβ = arcsin(2203amin/(λ2cmin)).
– fα = arcsin(2203

√
2bmin/(λ2cmin)) if 2203

√
2bmin � λ2cmin; otherwise, fα = π .

– fγ = arcsin(2203amin/(λ2bmin)) if 2203amin � λ2bmin; otherwise, fγ = π .

The rotation part R̊∗ of the optimal rigid motion belongs to Iβ × Iα × Iγ according to Lemma 4. We sample angles from
Iβ , Iα , and Iγ at intervals of εβ , εα , and εγ respectively, where

β = aminbmincmin

2 · 36b1c2
1

, α = aminbmincmin

35a2c2
2

, γ = aminbmincmin

35b2
1c1

.

Let Sξ denote the set of angles sampled from Iξ for every ξ ∈ {β,α,γ }. Our strategy is to try all rotations in Sβ × Sα × Sγ

and for each such rotation, find the best translation to maximize the overlap. It remains to show that the best rigid motion
obtained by this strategy gives a (1 − ε)-approximation.

We first prove a technical lemma about rotating a planar convex set. It is similar to Lemma 4 in [1], except that the
rotation center can be outside the convex set.

Lemma 5. Let C be a convex set in R
2 . Let C ′ be a copy of C rotated by an angle δ around a point p that is at distance l or less from

every point in C . Then |C\C ′| � (πδl/2) · diam(C) + πδ2l2/8.

Proof. We denote by D the symmetric difference between C and C ′ . Note that |D| = |C | − |C ∩ C ′| + |C ′| − |C ∩ C ′| =
2(|C | − |C ∩ C ′|) = 2|C\C ′|. Let C ′′ be a copy of C rotated by an angle δ/2 around p in the same direction as the rotation
from C to C ′ . Let T be the set of points that are at distance δl/2 or less from the boundary of C ′′ .

If we rotate C ′′ around p clockwise and anticlockwise by an angle δ/2, the boundary of C ′′ sweeps an area that con-
tains D . For every point q ∈ D , since the distance between p and q is at most l by assumption, the distance between q and
the boundary of C ′′ is at most δl/2, which implies that q ∈ T . Thus, D ⊂ T .

For all r > 0, the Minkowski sum of the boundary of C and a disk of radius r has area less than or equal to 2r · peri(C)+
πr2, which implies that |T | � δl · peri(C) + πδ2l2/4. Since peri(C) � π · diam(C), we obtain |D| � |T | � πδl · diam(C) +
πδ2l2/4. Hence, |C\C ′| = 1

2 |D| � (πδl/2) · diam(C) + πδ2l2/8. �
The following lemma shows that two copies of a convex polyhedron have a small symmetric difference if the Hausdorff

distance between them is small.
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Lemma 6. Let C be a convex polyhedron in R
3 . Let C ′ be a copy of C such that the Hausdorff distance between C and C ′ is at most l.

Let c and b be the first and second largest principal diameters of E(C). Then |C\C ′| � π l(b + 2l)(c + 2l).

Proof. Every point q ∈ C\C ′ is at distance l or less from the boundary of C ′ . Denote the Minkowski sum of C ′ and a ball
of radius l as MC ′ . The volume of C\C ′ is at most the volume of MC ′ \C ′ . Then |C\C ′| is at most l times the surface area of
MC ′ . Let E be an ellipsoid that is concentric with E(C ′) and has principal diameters a +2l, b +2l, and c +2l, where a � b � c
are the principal diameters of E(C ′). The ellipsoid E is the set of points at distance l or less from E(C ′). All points in MC ′
are at distance l or less from C ′ . It follows that MC ′ ⊆ E because C ′ ⊆ E(C ′). Therefore, for any plane H through the origin,
the orthogonal projection of MC ′ in H is contained in the orthogonal projection of E in H . By the Cauchy’s surface area
formula [9], the surface area of a convex shape S in R

3 is equal to the average area of the projection of S onto all possible
planes through the origin. We conclude that the surface area of MC ′ is at most the surface area of E . Therefore, |C\C ′| is at
most l times the surface area of E , which is at most π l(b + 2l)(c + 2l). �

The next result proves the correctness of our strategy to find a (1 − ε)-approximately maximum overlap of P1 and P2
under rigid motion.

Lemma 7. Let P1 and P2 be two convex polytopes in R
3 . Let ε be any value from (0,1/2]. Suppose that the maximum overlap of P1

and P2 under rigid motion is at least λ · max{|P1|, |P2|} for some constant λ ∈ (0,1]. Then, there exists a rotation R̃∗ ∈ Sβ × Sα × Sγ

and a translation T̃ such that |R̃γ (R̃β(P1)) ∩ T̃ (R̃α(P2))| is at least 1 − ε times the maximum overlap of P1 and P2 under rigid
motion.

Proof. The rotation part R̊∗ of the optimal rigid motion is represented by a triple of angles (θ̊β , θ̊α, θ̊γ ) ∈ Iβ × Iα × Iγ .
For all ξ ∈ {β,α,γ }, let θ̃ξ be the closest value in Sξ to θ̊ξ . Then, (θ̃β , θ̃α, θ̃γ ) defines a rotation R̃∗ . R̃β , R̃α , and R̃γ are
the rotations around the β1-axis, the α2-axis, and the R̃β(γ1)-axis that comprise R̃∗ . Let T̃ denote the translation that
maximizes the overlap of R̃γ (R̃β(P1)) and R̃α(P2). Let T̊ denote the translation that maximizes the overlap of R̊γ (R̊β(P1))

and R̊α(P2). Therefore,

∣
∣R̃γ

(
R̃β(P1)

) ∩ T̃
(

R̃α(P2)
)∣∣ �

∣
∣R̃γ

(
R̃β(P1)

) ∩ T̊
(

R̃α(P2)
)∣∣.

We analyze the difference between the maximum overlap and the approximate overlap as follows.

∣
∣R̊γ

(
R̊β(P1)

) ∩ T̊
(

R̊α(P2)
)∣∣ − ∣

∣R̃γ

(
R̃β(P1)

) ∩ T̃
(

R̃α(P2)
)∣∣

�
∣
∣R̊γ

(
R̊β(P1)

) ∩ T̊
(

R̊α(P2)
)∣∣ − ∣

∣R̃γ

(
R̃β(P1)

) ∩ T̊
(

R̃α(P2)
)∣∣

= ∣∣R̊γ

(
R̊β(P1)

) ∩ R̊α

(
T̊ (P2)

)∣∣ − ∣∣R̃γ

(
R̃β(P1)

) ∩ R̃α

(
T̊ (P2)

)∣∣

= ∣∣R̊γ

(
R̊β(P1)

) ∩ R̊α

(
T̊ (P2)

)∣∣ − ∣∣R̃γ

(
R̊β(P1)

) ∩ R̊α

(
T̊ (P2)

)∣∣ (1)

+ ∣∣R̃γ

(
R̊β(P1)

) ∩ R̊α

(
T̊ (P2)

)∣∣ − ∣∣R̃γ

(
R̊β(P1)

) ∩ R̃α

(
T̊ (P2)

)∣∣ (2)

+ ∣∣R̃γ

(
R̊β(P1)

) ∩ R̃α

(
T̊ (P2)

)∣∣ − ∣∣R̃γ

(
R̃β(P1)

) ∩ R̃α

(
T̊ (P2)

)∣∣. (3)

If a point p lies in R̊γ (R̊β(P1)) ∩ R̊α(T̊ (P2)) but not in R̃γ (R̊β(P1)) ∩ R̊α(T̊ (P2)), then p ∈ R̊γ (R̊β(P1)) but p /∈ R̃γ (R̊β(P1)).
The common rotation R̊β can be ignored. Thus,

∣
∣R̊γ

(
R̊β(P1)

) ∩ R̊α

(
T̊ (P2)

)∣∣ − ∣
∣R̃γ

(
R̊β(P1)

) ∩ R̊α

(
T̊ (P2)

)∣∣ �
∣
∣R̊γ (P1) \ R̃γ (P1)

∣
∣.

Similar reasoning shows that

∣
∣R̃γ

(
R̊β(P1)

) ∩ R̊α

(
T̊ (P2)

)∣∣ − ∣
∣R̃γ

(
R̊β(P1)

) ∩ R̃α

(
T̊ (P2)

)∣∣ �
∣
∣R̊α(P2) \ R̃α(P2)

∣
∣,

∣
∣R̃γ

(
R̊β(P1)

) ∩ R̃α

(
T̊ (P2)

)∣∣ − ∣
∣R̃γ

(
R̃β(P1)

) ∩ R̃α

(
T̊ (P2)

)∣∣ �
∣
∣R̃γ

(
R̊β(P1)

) \ R̃γ

(
R̃β(P1)

)∣∣.

Let H be a plane perpendicular to the γ1-axis of P1 that intersects R̊γ (P1) and R̃γ (P1). The convex polygon H ∩ R̃γ (P1) is
rotated from the convex polygon H ∩ R̊γ (P1) by an angle at most εγ around the point γ1 ∩ H . The diameter of H ∩ R̃γ (P1)

is at most b1. Since the rotation center γ1 ∩ H is at distance b1/2 or less from any point in H ∩ R̊γ (P1), Lemma 5 can be
applied. Thus, |(H ∩ R̊γ (P1)) \ (H ∩ R̃γ (P1))| � πεb2

1γ /4 + πε2b2
1

2
γ /32, which is less than πεb2

1γ /2 because εγ < 1.
Therefore,

∣
∣R̊γ (P1) \ R̃γ (P1)

∣
∣ � c1 · π

2
εb2

1γ = π

2 · 35
εaminbmincmin.

Similar reasoning shows that
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Fig. 3. Illustrations for bounding ‖R̃γ (R̊β (x)) − R̃γ (R̃β (x))‖.

∣
∣R̊α(P2) \ R̃α(P2)

∣
∣ � a2 · π

2
εc2

2α = π

2 · 35
εaminbmincmin.

Substituting the above results into (1)–(3) gives
∣∣R̊γ

(
R̊β(P1)

) ∩ T̊
(

R̊α(P2)
)∣∣ − ∣∣R̃γ

(
R̃β(P1)

) ∩ T̃
(

R̃α(P2)
)∣∣

�
∣∣R̃γ

(
R̊β(P1)

) \ R̃γ

(
R̃β(P1)

)∣∣ + π

35
εaminbmincmin. (4)

We bound |R̃γ (R̊β(P1)) \ R̃γ (R̃β(P1))| as follows. R̃γ (R̊β(P1)) \ R̃γ (R̃β(P1)) may be non-empty because the angle be-
tween R̊β(γ1) and R̃β(γ1) can be as large as εβ/2. This slight misalignment causes the results to be different after rotating
R̊β(P1) and R̃β(P1) around R̊β(γ1) and R̃β(γ1), respectively, by the same angle θ̃γ .

Let x be a point of P1. To apply Lemma 6, we need to bound the Hausdorff distance between R̃γ (R̊β(x)) and R̃γ (R̃β(x)).
Let x̊ = R̊β(x) and let x̃ = R̃β(x). Let H̊ and H̃ be the planes that contain x̊ and x̃, respectively, and are orthogonal to R̊β(γ1)

and R̃β(γ1), respectively. Let c̊ be the point H̊ ∩ R̊β(γ1), and let c̃ be the point H̃ ∩ R̃β(γ1). Note that ‖c̊ − c̃‖ � εc1β/2
and ‖c̊ − x̊‖ = ‖c̃ − x̃‖ � b1/2. R̃γ rotates x̊ on the boundary of a disk D̊ ⊂ H̊ with center c̊ and radius r = ‖c̊ − x̊‖ � b1/2.
Similarly, R̃γ rotates x̃ on the boundary of a disk D̃ ⊂ H̃ with center c̃ and the same radius r = ‖c̃ − x̃‖ = ‖c̊ − x̊‖. Fig. 3(a)
shows an example.

We apply a translation τ = c̃ − c̊ to D̊ . That is, τ translates D̊ to align c̊ with c̃. Fig. 3(b) shows the effect of τ . The
intersection D̃ ∩ (D̊ + τ ) is a diameter of D̃ . Let � be a common radius of D̃ and D̊ + τ that lies on D̃ ∩ (D̊ + τ ). Note
that � is parallel to the β1-axis because we rotated P1 around the β1-axis at first and therefore D̃ and D̊ are parallel to
the β1-axis. For the same reason the angle between � and the line connecting x̃ and c̃ is the same as the angle between
� and the line connecting x̊ + τ and c̊ + τ = c̃. Since the same rotation R̃γ is applied to both R̊β(P1) and R̃β(P1), x̊ and x̃

are rotated on the boundary of D̊ and D̃ respectively with the same angle θ̃γ . Therefore the angle between � and the line
connecting R̃γ (x̃) and c̃ is the same as the angle between � and the line connecting R̃γ (x̊)+ τ and c̊ + τ = c̃. It follows that
the acute angle between the line segment connecting c̃ and R̃γ (x̃) and the line segment connecting c̊ + τ and R̃γ (x̊) + τ is
no more than the angle between D̃ and D̊ + τ . The angle between D̊ + τ and D̃ is same as the angle between R̊β(γ1) and
R̃β(γ1), so ‖R̃γ (x̊) + τ − R̃γ (x̃)‖� εrβ/2.

By the triangle inequality,
∥
∥R̃γ

(
R̊β(x)

) − R̃γ

(
R̃β(x)

)∥∥� ‖c̊ − c̃‖ + ∥
∥R̃γ (x̊) + τ − R̃γ (x̃)

∥
∥

� εc1β + rεβ/2

� 3εc1β/4.

The above relation holds for every point x ∈ P1, which means that the Hausdorff distance between R̃γ (R̊β(P1))

and R̃γ (R̃β(P1)) is at most εc1β . We apply Lemma 6 with C = R̃γ (R̊β(P1)), C ′ = R̃γ (R̃β(P1)), and l = 3εc1β/4 �
εaminbmincmin/(2335b1c1). Therefore, Lemma 6 gives

∣
∣R̃γ

(
R̊β(P1)

) \ R̃γ

(
R̃β(P1)

)∣∣ � π l(b1 + 2l)(c1 + 2l)
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� πb1c1l + 4πc1l2 + 4π l3

� π

2335
εaminbmincmin + π

24310
ε2a2

mincmin + π

27315
ε3a3

min

<
π

22 · 35
εaminbmincmin.

Substituting this inequality into (4) shows that |R̊γ (R̊β(P1)) ∩ T̊ (R̊α(P2))| − |R̃γ (R̃β(P1)) ∩ T̃ (R̃α(P2))| < 5επaminbmincmin/

(12 · 34). Since 1
3E(P1) ∩ 1

3E(P2) lies inside P1 ∩ P2 and has volume at least πaminbmincmin/(2 · 34), it follows that

|R̊γ (R̊β(P1)) ∩ T̊ (R̊α(P2))| − |R̃γ (R̃β(P1)) ∩ T̃ (R̃α(P2))| is at most ε times the maximum overlap of P1 and P2 under rigid
motion. �
4. Main algorithm

We use the result of the previous section to sample a set of rotations Sβ × Sα × Sγ from Iβ × Iα × Iγ . For each rotation
R∗ ∈ Sβ × Sα × Sγ , we want to compute the best translation to align Rγ (Rβ(P1)) and Rα(P2), and then keep track of the
rigid motion M = (T , R∗) encountered so far that gives the largest overlap. For efficiency purpose, we compute the “almost
best” translation using Theorem 8 below. There is enough slack in the proof of Lemma 7 so that the analysis still works as
long as we invoke Theorem 8 with μ < πεaminbmincmin/(12 · 34). Algorithm 1 shows the pseudocode of our algorithm.

Theorem 8. (See [3].) Let P1 and P2 be two convex polytopes in R
3 specified by n bounding planes. For any fixed μ > 0, we can

compute an overlap of P1 and P2 under translation that is at most μ less than the optimum. The running time is O (n log3.5 n) with
probability 1 − n−O (1) .

Algorithm 1 Maximum overlap approximation algorithm.
1: procedure MaxOverlap(P1, P2, ε) � return (1 − ε)-optimal rigid motion
2: Compute E(P1) and E(P2) and align their centers and the respective axes.
3: Compute three sets of sampled angles Sβ , Sα , and Sγ .
4: ans := 0
5: M := null
6: for all rotation R∗ ∈ Sβ × Sα × Sγ do
7: Compute the translation T to align Rγ (Rβ (P1)) and Rα(P2) using Theorem 8
8: if |Rγ (Rβ (P1)) ∩ T (Rα(P2))| > ans then
9: ans := |Rγ (Rβ (P1)) ∩ T (Rα(P2))|

10: M := (R∗, T )

11: end if
12: end for
13: return M
14: end procedure

Theorem 9. Let P1 and P2 be two convex polytopes in R
3 specified by n bounding planes. Suppose that the maximum overlap of P1

and P2 under rigid motion is at least λ · max{|P1|, |P2|} for some given constant λ ∈ (0,1]. For all ε ∈ (0,1/2) and for all n � 1/ε,
Algorithm 1 runs in O (ε−3n log3.5 n) time with probability at least 1 − n−O (1) and returns a (1 − ε)-approximate maximum overlap
of P1 and P2 under rigid motion.

Proof. The approximation factor of Algorithm 1 is guaranteed by Lemma 7. We analyze its running time as follows. First,
it takes O (n) time to compute the ellipsoids E(P1) and E(P2) by Lemma 1. The remaining time spent by Algorithm 1 is
|Sβ | · |Sα | · |Sγ | · n log3.5 n with probability at least 1 − n−O (1) . Thus, it suffices to bound |Sβ | · |Sα | · |Sγ |, which is O (ε−3 ·
|Iβ ||Iα ||Iγ | · (βαγ )−1)).

Suppose that 2203amin > λ2cmin/
√

2. Then Iξ = (−π,π ] for all ξ ∈ {β,α,γ }. The assumption of 2203amin > λ2cmin/
√

2
implies that amin, bmin, and cmin are within constant factors of each other. Therefore, βαγ = Θ(1) by Lemma 3, which
implies that |Sβ | · |Sα | · |Sγ | = O (ε−3). Thus, the running time is O (ε−3n log3.5 n) with probability 1 − O (ε−3n−O (1)) =
1 − n−O (1) because we assume that n � 1/ε.

Suppose that 2203amin � λ2cmin/
√

2. Then |Iβ | = O (amin/cmin) and, by Lemma 3, β = Θ(amin/cmin). Therefore,
|Iβ |/β = O (1). By definition, |Iα | = O (bmin/cmin) and, by Lemma 3, α = Θ(bmin/cmin). Therefore, |Iα |/α = O (1). Simi-
larly, |Iγ | = O (amin/bmin) and, by Lemma 3, γ = Θ(amin/bmin). Thus, |Iγ |/γ = O (1). We conclude that the running time
in this case is also O (ε−3n log3.5 n) with high probability. �
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