11 research outputs found

    Spallation reaction study for fission products in nuclear waste: Cross section measurements for 137

    Full text link
    Spallation reactions for the long-lived fission products 137Cs, 90Sr and 107Pd have been studied for the purpose of nuclear waste transmutation. The cross sections on the proton- and deuteron-induced spallation were obtained in inverse kinematics at the RIKEN Radioactive Isotope Beam Factory. Both the target and energy dependences of cross sections have been investigated systematically. and the cross-section differences between the proton and deuteron are found to be larger for lighter fragments. The experimental data are compared with the SPACS semi-empirical parameterization and the PHITS calculations including both the intra-nuclear cascade and evaporation processes

    Magnetic Moment of the Isomeric State of 75^{75}Cu Measured with a Highly Spin-aligned Beam

    No full text
    International audienceThe magnetic moment of the isomeric state of the neutron-rich ^75Cu nucleus was measured using a highly spin-aligned beam produced via a two-step reaction scheme. In the experiment carried out at the BigRIPS at RIBF, we achieved to produce spin alignment reaching 30% by employing the one-proton removal from ^76Zn to produce ^75Cu. In the magnetic moment measurement, a method of time-differential perturbed angular distribution (TDPAD) was employed. Precession of the isomeric state with spin parity of 3/2^− was clearly observed with significance larger than 5σ in the TDPAD spectrum. The magnetic moment of the isomeric state of ^75Cu was determined to be ÎŒ = 1.40(6)ÎŒ_N

    Experimental Challenges of the First Mass Measurement Campaign at the Rare-RI Ring

    No full text
    With the recent commissioning of the Rare-RI Ring (R3), nuclear mass measurement of rare isotopes (RIs) produced at the RI Beam Factory (RIBF) at RIKEN has become possible. The R3 spectrometer is based on the Isochronous Mass Spectrometry technique that allows for reaching a mass measurement precision of 10−6 within less than 1 ms. With the newly established self-triggered individual injection method, R3 specialized in mass measurements of extremely short-lived nuclei with low production yields. In this paper, we report the first mass measurement campaign conducted at the R3 addressing nuclei in the vicinity of N=50 and N=82 neutron magic numbers, with a particular focus on the challenges of this new facility

    Precision spectroscopy of pionic atoms and chiral symmetry in nuclei

    No full text
    We conduct an experimental project to make spectroscopy of deeply bound pionic atoms systematically over wide range of nuclei. We aim at studying the strong interaction in the low energy region, which has close connection to spontaneous chiral symmetry breaking and its partial restoration in nuclear matter. First experimental results show improved spectral resolution and much better statistical sensitivity than previous experiments. Present status of the experiment is reported

    Precision spectroscopy of pionic atoms and chiral symmetry in nuclei

    No full text
    We conduct an experimental project to make spectroscopy of deeply bound pionic atoms systematically over wide range of nuclei. We aim at studying the strong interaction in the low energy region, which has close connection to spontaneous chiral symmetry breaking and its partial restoration in nuclear matter. First experimental results show improved spectral resolution and much better statistical sensitivity than previous experiments. Present status of the experiment is reported

    Spallation reaction study for long-lived fission products in nuclear waste

    Get PDF
    Spallation reaction for the long-lived fission product 107Pd has been studied for the purpose of nuclear waste transmutation. The isotopic-distribution cross sections on both proton and deuteron were obtained at 118 MeV/nucleon in inverse kinematics at the RIKEN Radioactive Isotope Beam Factory. A large cross-section difference was found between the proton and deuteron results for the light-mass products. The data were compared with the SPACS semi-empirical parameterization and the PHITS calculations including both the intranuclear cascade and evaporation processes. In addition, the potential of spallation reaction for transmutation of 107Pd is discussed

    Spallation reaction study for fission products in nuclear waste: Cross section measurements for 137Cs, 90Sr and 107Pd on proton and deuteron

    No full text
    Spallation reactions for the long-lived fission products 137Cs, 90Sr and 107Pd have been studied for the purpose of nuclear waste transmutation. The cross sections on the proton- and deuteron-induced spallation were obtained in inverse kinematics at the RIKEN Radioactive Isotope Beam Factory. Both the target and energy dependences of cross sections have been investigated systematically. and the cross-section differences between the proton and deuteron are found to be larger for lighter fragments. The experimental data are compared with the SPACS semi-empirical parameterization and the PHITS calculations including both the intra-nuclear cascade and evaporation processes

    Spallation reaction study for long-lived fission products in nuclear waste

    No full text
    Spallation reaction for the long-lived fission product 107Pd has been studied for the purpose of nuclear waste transmutation. The isotopic-distribution cross sections on both proton and deuteron were obtained at 118 MeV/nucleon in inverse kinematics at the RIKEN Radioactive Isotope Beam Factory. A large cross-section difference was found between the proton and deuteron results for the light-mass products. The data were compared with the SPACS semi-empirical parameterization and the PHITS calculations including both the intranuclear cascade and evaporation processes. In addition, the potential of spallation reaction for transmutation of 107Pd is discussed

    Pionic atom unveils hidden structure of QCD vacuum

    Full text link
    Modern theories of physics tell that the vacuum is not an empty space. Hidden in the vacuum is a structure of anti-quarks qˉ\bar{q} and quarks qq. The qˉ\bar{q} and qq pair has the same quantum number as the vacuum and condensates in it since the strong interaction of the quantum chromodynamics (QCD) is too strong to leave it empty. The qˉq\bar{q}q condensation breaks the chiral symmetry of the vacuum. The expectation value is an order parameter. For higher temperature or higher matter-density, ∣∣|| decreases reflecting the restoration of the symmetry. In contrast to these clear-cut arguments, experimental evidence is so far limited. First of all, the qˉq\bar{q}q is nothing but the vacuum itself. It is neither visible nor perceptible. In this article, we unravel this invisible existence by high precision measurement of pionic atoms, π−\pi^--meson-nucleus bound systems. Using the π−\pi^- as a probe, we demonstrate that ∣∣|| is reduced in the nucleus by a factor of 58 ±\pm 4% compared with that in the vacuum. This reduction indicates that the chiral symmetry is partially restored due to the extremely high density of the nucleus. The present experimental result clearly exhibits the existence of the hidden structure, the chiral condensate, in the vacuum

    Spallation reaction study for fission products in nuclear waste: Cross section measurements for

    No full text
    Spallation reactions for the long-lived fission products 137Cs, 90Sr and 107Pd have been studied for the purpose of nuclear waste transmutation. The cross sections on the proton- and deuteron-induced spallation were obtained in inverse kinematics at the RIKEN Radioactive Isotope Beam Factory. Both the target and energy dependences of cross sections have been investigated systematically. and the cross-section differences between the proton and deuteron are found to be larger for lighter fragments. The experimental data are compared with the SPACS semi-empirical parameterization and the PHITS calculations including both the intra-nuclear cascade and evaporation processes
    corecore