25 research outputs found

    Quantum error correction for continuously detected errors with any number of error channels per qubit

    Get PDF
    It was shown by Ahn, Wiseman, and Milburn [PRA {\bf 67}, 052310 (2003)] that feedback control could be used as a quantum error correction process for errors induced by weak continuous measurement, given one perfectly measured error channel per qubit. Here we point out that this method can be easily extended to an arbitrary number of error channels per qubit. We show that the feedback protocols generated by our method encode n2n-2 logical qubits in nn physical qubits, thus requiring just one more physical qubit than in the previous case.Comment: 4 page

    On the Distributed Compression of Quantum Information

    Get PDF
    The problem of distributed compression for correlated quantum sources is considered. The classical version of this problem was solved by Slepian and Wolf, who showed that distributed compression could take full advantage of redundancy in the local sources created by the presence of correlations. Here it is shown that, in general, this is not the case for quantum sources, by proving a lower bound on the rate sum for irreducible sources of product states which is stronger than the one given by a naive application of Slepian–Wolf. Nonetheless, strategies taking advantage of correlation do exist for some special classes of quantum sources. For example, Devetak and Winter demonstrated the existence of such a strategy when one of the sources is classical. Optimal nontrivial strategies for a different extreme, sources of Bell states, are presented here. In addition, it is explained how distributed compression is connected to other problems in quantum information theory, including information-disturbance questions, entanglement distillation and quantum error correction

    Exposed-key weakness of αη\alpha \eta

    Full text link
    The αη\alpha \eta protocol given by Barbosa \emph{et al.}, PRL 90, 227901 (2003) claims to be a secure way of encrypting messages using mesoscopic coherent states. We show that transmission under αη\alpha \eta exposes information about the secret key to an eavesdropper, and we estimate the rate at which an eavesdropper can learn about the key. We also consider the consequences of using further randomization to protect the key and how our analysis applies to this case. We conclude that αη\alpha \eta is not informationally secure.Comment: 6 pg. Was originally written in May 2006 and has languished in getting-approved-land for 7 months, but we've tried to keep current with papers published since then. This version changed for publicatio

    Quantum error correction for continuously detected errors

    Get PDF
    We show that quantum feedback control can be used as a quantum error correction process for errors induced by weak continuous measurement. In particular, when the error model is restricted to one, perfectly measured, error channel per physical qubit, quantum feedback can act to perfectly protect a stabilizer codespace. Using the stabilizer formalism we derive an explicit scheme, involving feedback and an additional constant Hamiltonian, to protect an (n1n-1)-qubit logical state encoded in nn physical qubits. This works for both Poisson (jump) and white-noise (diffusion) measurement processes. In addition, universal quantum computation is possible in this scheme. As an example, we show that detected-spontaneous emission error correction with a driving Hamiltonian can greatly reduce the amount of redundancy required to protect a state from that which has been previously postulated [e.g., Alber \emph{et al.}, Phys. Rev. Lett. 86, 4402 (2001)].Comment: 11 pages, 1 figure; minor correction

    Continuous quantum error correction via quantum feedback control

    Get PDF
    We describe a protocol for continuously protecting unknown quantum states from decoherence that incorporates design principles from both quantum error correction and quantum feedback control. Our protocol uses continuous measurements and Hamiltonian operations, which are weaker control tools than are typically assumed for quantum error correction. We develop a cost function appropriate for unknown quantum states and use it to optimize our state-estimate feedback. Using Monte Carlo simulations, we study our protocol for the three-qubit bit-flip code in detail and demonstrate that it can improve the fidelity of quantum states beyond what is achievable using quantum error correction when the time between quantum error correction cycles is limited.Comment: 12 pages, 6 figures, REVTeX; references fixe

    An investigation in the correlation between Ayurvedic body-constitution and food-taste preference

    Get PDF

    Post-intervention Status in Patients With Refractory Myasthenia Gravis Treated With Eculizumab During REGAIN and Its Open-Label Extension

    Get PDF
    OBJECTIVE: To evaluate whether eculizumab helps patients with anti-acetylcholine receptor-positive (AChR+) refractory generalized myasthenia gravis (gMG) achieve the Myasthenia Gravis Foundation of America (MGFA) post-intervention status of minimal manifestations (MM), we assessed patients' status throughout REGAIN (Safety and Efficacy of Eculizumab in AChR+ Refractory Generalized Myasthenia Gravis) and its open-label extension. METHODS: Patients who completed the REGAIN randomized controlled trial and continued into the open-label extension were included in this tertiary endpoint analysis. Patients were assessed for the MGFA post-intervention status of improved, unchanged, worse, MM, and pharmacologic remission at defined time points during REGAIN and through week 130 of the open-label study. RESULTS: A total of 117 patients completed REGAIN and continued into the open-label study (eculizumab/eculizumab: 56; placebo/eculizumab: 61). At week 26 of REGAIN, more eculizumab-treated patients than placebo-treated patients achieved a status of improved (60.7% vs 41.7%) or MM (25.0% vs 13.3%; common OR: 2.3; 95% CI: 1.1-4.5). After 130 weeks of eculizumab treatment, 88.0% of patients achieved improved status and 57.3% of patients achieved MM status. The safety profile of eculizumab was consistent with its known profile and no new safety signals were detected. CONCLUSION: Eculizumab led to rapid and sustained achievement of MM in patients with AChR+ refractory gMG. These findings support the use of eculizumab in this previously difficult-to-treat patient population. CLINICALTRIALSGOV IDENTIFIER: REGAIN, NCT01997229; REGAIN open-label extension, NCT02301624. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that, after 26 weeks of eculizumab treatment, 25.0% of adults with AChR+ refractory gMG achieved MM, compared with 13.3% who received placebo

    Minimal Symptom Expression' in Patients With Acetylcholine Receptor Antibody-Positive Refractory Generalized Myasthenia Gravis Treated With Eculizumab

    Get PDF
    The efficacy and tolerability of eculizumab were assessed in REGAIN, a 26-week, phase 3, randomized, double-blind, placebo-controlled study in anti-acetylcholine receptor antibody-positive (AChR+) refractory generalized myasthenia gravis (gMG), and its open-label extension
    corecore