14 research outputs found

    Uzaktan algılama ve coğrafi bilgi sistemlerinin hidrolojik model tahminlerinde işlevsel kullanımı

    No full text
    Snow indicates the potential stored water volume that is an important source of water supply, which has been the most valuable and indispensable natural resource throughout the history of the world. Euphrates and Tigris, having the biggest dams of Turkey, are the two largest trans-boundary rivers that originate in Turkey and pass throughout the water deficit nations Syria, Iran, Iraq and Saudi Arabia bringing life as well as water all their way. Snowmelt runoff originating from the mountains of Eastern Turkey accounts for 60 to 70 % of total annual discharge observed in Euphrates and Tigris. For an optimum operation of the dams, maximizing energy production, mitigation of floods and satisfying water rights, hydrological models which can both simulate and forecast the river discharges of Euphrates and Tigris are needed. In this study a hydrological model, snowmelt runoff model (SRM), is used in conjunction with remote sensing and geographic information systems to forecast the river discharges in the headwaters of Euphrates River, Upper Euphrates Basin. NOAA and MODIS satellite images were used to derive the snow covered area (SCA) information required by SRM. Linear reduction methodologies based on accumulated air temperature, with constant or varying gradient, were developed to get the continuous daily SCA values from the discrete daily satellite images. Temperature and precipitation forecasts were gathered from two different numerical weather prediction models, namely European Center for Medium Range Weather Forecasts (ECMWF) and Mesoscale Model Version 5 (MM5) from Turkish State Meteorological Services. These data sets provided t+24 hour forecasts of both temperature and precipitation. Temperature, precipitation and SCA information are fed into SRM. Discharge forecasts obtained from the model outputs are compared with the observed values. The overall performance ofPh.D. - Doctoral Progra

    Exploring Jeddah Floods by Tropical Rainfall Measuring Mission Analysis

    No full text
    Estimating flash floods in arid regions is a challenge arising from the limited time preventing mitigation measures from being taken, which results in fatalities and property losses. Here, Tropical Rainfall Measuring Mission (TRMM) Multi Satellite Precipitation Analysis (TMPA) Real Time (RT) 3B2RT data are utilized in estimating floods that occurred over the city of Jeddah located in the western Kingdom of Saudi Arabia. During the 2000–2014 period, six floods that were effective on 19 days occurred in Jeddah. Three indices, constant threshold (CT), cumulative distribution functions (CDFs) and Jeddah flood index (JFI), were developed using 15-year 3-hourly 3B42RT. The CT calculated, as 10.37 mm/h, predicted flooding on 14 days, 6 of which coincided with actual flood-affected days (FADs). CDF thresholds varied between 87 and 93.74%, and JFI estimated 28 and 20 FADs where 8 and 7 matched with actual FADs, respectively. While CDF and JFI did not miss any flood event, CT missed the floods that occurred in the heavy rain months of January and December. The results are promising despite that only rainfall rates, i.e., one parameter out of various flood triggering mechanisms, i.e., soil moisture, topography and land use, are used. The simplicity of the method favors its use in TRMM follow-on missions such as the Global Precipitation Measurement Mission (GPM)

    Integration of remote sensing and geographic information systems on snow hydrology modelling

    No full text

    Use of interactive multisensor snow and ice mapping system snow cover maps (IMS) and artificial neural networks for simulating river discharges in Eastern Turkey

    No full text
    Basins located in Eastern Turkey are largely fed by snowmelt runoff during spring and early summer seasons. This study investigates the efficiency of artificial neural networks (ANNs) in snowmelt runoff generation. Although ANNs have been used for streamflow simulating/forecasting in the last two decades, using satellite-based snow-covered area (SCA) maps and meteorological observations as inputs to ANN provides a novel basis for estimating streamflow. The proposed methodology is implemented over Upper Euphrates River Basin in Eastern Turkey. SCA data was acquired from Interactive Multisensor Snow and Ice Mapping System (IMS) for an 8-year period from February 2004 to September 2011. Meteorological observations including daily cumulative precipitation and daily average air temperatures were obtained from Turkish State Meteorological Services. The simulation results are promising with coefficient of correlation varying from 0.67 to 0.98 among proposed models. Past days discharge was found to substantially improve the forecast accuracy. The paper presents the expected basin discharge for 2011 water year based on meteorological observations and SCA input

    Commentary on comparison of MODIS snow cover and albedo products with ground observations over the mountainous terrain of Turkey

    No full text
    The MODerate-resolution Imaging Spectroradiometer (MODIS) snow cover product was evaluated by Parajka and Blosch (2006) over the territory of Austria. The spatial and temporal variability of the MODIS snow product classes are analyzed, the accuracy of the MODIS snow product against numerous in situ snow depth data are examined and the main factors that may influence the MODIS classification accuracy are identified in their studies. The authors of this paper would like to provide more discussion to the scientific community on the "Validation of MODIS snow cover images" when similar methodology is applied to mountainous regions covered with abundant snow but with limited number of ground survey and automated stations. Daily snow cover maps obtained from MODIS images are compared with ground observations in mountainous terrain of Turkey for the winter season of 2002-2003 and 2003-2004 during the accumulation and ablation periods of snow. Snow depth and density values are recorded to determine snow water equivalent (SWE) values at 19 points in and around the study area in Turkey. Comparison of snow maps with in situ data show good agreement with overall accuracies in between 62 to 82 percent considering a 2-day shift during cloudy days. Studies show that the snow cover extent can be used for forecasting of runoff hydrographs resulting mostly from snowmelt for a mountainous basin in Turkey. MODIS-Terra snow albedo products are also compared with ground based measurements over the ablation stage of 2004 using the automated weather operating stations (AWOS) records at fixed locations as well as from the temporally assessed measuring sites during the passage of the satellite. Temporarily assessed 20 ground measurement sites are randomly distributed around one of the AWOS stations and both MODIS and ground data were aggregated in GIS for analysis. Reduction in albedo is noticed as snow depth decreased and SWE values increased.The MODerate-resolution Imaging Spectroradiometer (MODIS) snow cover product was evaluated by Parajka and Blosch (2006) over the territory of Austria. The spatial and temporal variability of the MODIS snow product classes are analyzed, the accuracy of the MODIS snow product against numerous in situ snow depth data are examined and the main factors that may influence the MODIS classification accuracy are identified in their studies. The authors of this paper would like to provide more discussion to the scientific community on the "Validation of MODIS snow cover images" when similar methodology is applied to mountainous regions covered with abundant snow but with limited number of ground survey and automated stations. Daily snow cover maps obtained from MODIS images are compared with ground observations in mountainous terrain of Turkey for the winter season of 2002-2003 and 2003-2004 during the accumulation and ablation periods of snow. Snow depth and density values are recorded to determine snow water equivalent (SWE) values at 19 points in and around the study area in Turkey. Comparison of snow maps with in situ data show good agreement with overall accuracies in between 62 to 82 percent considering a 2-day shift during cloudy days. Studies show that the snow cover extent can be used for forecasting of runoff hydrographs resulting mostly from snowmelt for a mountainous basin in Turkey. MODIS-Terra snow albedo products are also compared with ground based measurements over the ablation stage of 2004 using the automated weather operating stations (AWOS) records at fixed locations as well as from the temporally assessed measuring sites during the passage of the satellite. Temporarily assessed 20 ground measurement sites are randomly distributed around one of the AWOS stations and both MODIS and ground data were aggregated in GIS for analysis. Reduction in albedo is noticed as snow depth decreased and SWE values increased
    corecore