Uzaktan algılama ve coğrafi bilgi sistemlerinin hidrolojik model tahminlerinde işlevsel kullanımı

Abstract

Snow indicates the potential stored water volume that is an important source of water supply, which has been the most valuable and indispensable natural resource throughout the history of the world. Euphrates and Tigris, having the biggest dams of Turkey, are the two largest trans-boundary rivers that originate in Turkey and pass throughout the water deficit nations Syria, Iran, Iraq and Saudi Arabia bringing life as well as water all their way. Snowmelt runoff originating from the mountains of Eastern Turkey accounts for 60 to 70 % of total annual discharge observed in Euphrates and Tigris. For an optimum operation of the dams, maximizing energy production, mitigation of floods and satisfying water rights, hydrological models which can both simulate and forecast the river discharges of Euphrates and Tigris are needed. In this study a hydrological model, snowmelt runoff model (SRM), is used in conjunction with remote sensing and geographic information systems to forecast the river discharges in the headwaters of Euphrates River, Upper Euphrates Basin. NOAA and MODIS satellite images were used to derive the snow covered area (SCA) information required by SRM. Linear reduction methodologies based on accumulated air temperature, with constant or varying gradient, were developed to get the continuous daily SCA values from the discrete daily satellite images. Temperature and precipitation forecasts were gathered from two different numerical weather prediction models, namely European Center for Medium Range Weather Forecasts (ECMWF) and Mesoscale Model Version 5 (MM5) from Turkish State Meteorological Services. These data sets provided t+24 hour forecasts of both temperature and precipitation. Temperature, precipitation and SCA information are fed into SRM. Discharge forecasts obtained from the model outputs are compared with the observed values. The overall performance ofPh.D. - Doctoral Progra

    Similar works