65 research outputs found

    Care levels for fetal therapy centers

    Get PDF
    Fetal therapies undertaken to improve fetal outcome or to optimize transition to neonate life often entail some level of maternal, fetal, or neonatal risk. A fetal therapy center needs access to resources to carry out such therapies and to manage maternal, fetal, and neonatal complications that might arise, either related to the therapy per se or as part of the underlying fetal or maternal condition. Accordingly, a fetal therapy center requires a dedicated operational infrastructure and necessary resources to allow for appropriate oversight and monitoring of clinical performance and to facilitate multidisciplinary collaboration between the relevant specialties. Three care levels for fetal therapy centers are proposed to match the anticipated care complexity, with appropriate resources to achieve an optimal outcome at an institutional and regional level. A level I fetal therapy center should be capable of offering fetal interventions that may be associated with obstetric risks of preterm birth or membrane rupture but that would be very unlikely to require maternal medical subspecialty or intensive care, with neonatal risks not exceeding those of moderate prematurity. A level II center should have the incremental capacity to provide maternal intensive care and to manage extreme neonatal prematurity. A level III therapy center should offer the full range of fetal interventions (including open fetal surgery) and be able manage any of the associated maternal complications and comorbidities, as well as have access to neonatal and pediatric surgical intervention including indicated surgery for neonates with congenital anomalies

    Potential higher risk of tethered spinal cord in children after prenatal surgery for myelomeningocele:A systematic review and meta-analysis

    Get PDF
    Introduction We performed a systematic review and meta-analysis on the incidence of secondary tethered spinal cord (TSC) between prenatal and postnatal closure in patients with MMC. The objectives was to understand the incidence of secondary TSC after prenatal surgery for MMC compared to postnatal surgery for MMC. Material and methods On May 4, 2023, a systematic search was conducted in Medline, Embase, and the Cochrane Library to gather relevant data. Primary studies focusing on repair type, lesion level, and TSC were included, while non-English or non-Dutch reports, case reports, conference abstracts, editorials, letters, comments, and animal studies were excluded. Two reviewers assessed the included studies for bias risk, following PRISMA guidelines. TSC frequency in MMC closure types was determined, and the relationship between TSC occurrence and closure technique was analyzed using relative risk and Fisher's exact test. Subgroup analysis revealed relative risk differences based on study designs and follow-up periods. A total of ten studies, involving 2,724 patients, were assessed. Among them, 2,293 patients underwent postnatal closure, while 431 received prenatal closure for the MMC defect. In the prenatal closure group, TSC occurred in 21.6% (n = 93), compared to 18.8% (n = 432) in the postnatal closure group. The relative risk (RR) of TSC in patients with prenatal MMC closure versus postnatal MMC closure was 1.145 (95%CI 0.939 to 1.398). Fisher's exact test indicated a statistically non-significant association (p = 0.106) between TSC and closure technique. When considering only RCT and controlled cohort studies, the overall RR for TSC was 1.308 (95%CI 1.007 to 1.698) with a non-significant association (p = .053). For studies focusing on children up until early puberty (maximum 12 years follow-up), the RR for tethering was 1.104 (95%CI 0.876 to 1.391), with a non-significant association (p = 0.409). Conclusion and discussion This review found no significant increase in relative risk of TSC between prenatal and postnatal closure in MMC patients, but a trend of increased TSC in the prenatal group. More longterm data on TSC after fetal closure is needed for better counseling and outcomes in MMC.</p

    A Core Outcome Set for the prevention and treatment of fetal GROwth restriction: deVeloping Endpoints: the COSGROVE study.

    Get PDF
    BACKGROUND: Fetal growth restriction refers to a fetus that does not reach its genetically predetermined growth potential. It is well-recognized that growth-restricted fetuses are at increased risk of both short- and long-term adverse outcomes. Systematic evaluation of the evidence from clinical trials of fetal growth restriction is often difficult because of variation in the outcomes that are measured and reported. The development of core outcome sets for fetal growth restriction studies would enable future trials to measure similar meaningful outcomes. OBJECTIVE: The purpose of this study was to develop core outcome sets for trials of prevention or treatment of fetal growth restriction. STUDY DESIGN: This was a Delphi consensus study. A comprehensive literature review was conducted to identify outcomes that were reported in studies of prevention or treatment of fetal growth restriction. All outcomes were presented for prioritization to key stakeholders (135 healthcare providers, 68 researchers/academics, and 35 members of the public) in 3 rounds of online Delphi surveys. A priori consensus criteria were used to reach agreement on the final outcomes for inclusion in the core outcome set at a face-to-face meeting with 5 healthcare providers, 5 researchers/academics, and 6 maternity service users. RESULTS: In total, 22 outcomes were included in the final core outcome set. These outcomes were grouped under 4 domains: maternal (n=4), fetal (n=1), neonatal (n=12), and childhood (n=5). CONCLUSION: The Core Outcome Set for the prevention and treatment of fetal GROwth restriction: deVeloping Endpoints study identified a large number of potentially relevant outcomes and then reached consensus on those factors that, as a minimum, should be measured and reported in all future trials of prevention or treatment of fetal growth restriction. This will enable future trials to measure similar meaningful outcomes and to ensure that findings from different studies can be compared and combined

    Diagnosis and management of selective fetal growth restriction in monochorionic twin pregnancies: A cross‐sectional international survey

    Get PDF
    Objective: To identify current practices in the management of selective fetal growth restriction (sFGR) in monochorionic diamniotic (MCDA) twin pregnancies. Design: Cross‐sectional survey. Setting: International. Population: Clinicians involved in the management of MCDA twin pregnancies with sFGR. Methods: A structured, self‐administered survey. Main Outcome Measures: Clinical practices and attitudes to diagnostic criteria and management strategies. Results: Overall, 62.8% (113/180) of clinicians completed the survey; of which, 66.4% (75/113) of the respondents reported that they would use an estimated fetal weight (EFW) of 25% for the diagnosis of sFGR. For early‐onset type I sFGR, 79.8% (75/94) of respondents expressed that expectant management would be their routine practice. On the other hand, for early‐onset type II and type III sFGR, 19.3% (17/88) and 35.7% (30/84) of respondents would manage these pregnancies expectantly, whereas 71.6% (63/88) and 57.1% (48/84) would refer these pregnancies to a fetal intervention centre or would offer fetal intervention for type II and type III cases, respectively. Moreover, 39.0% (16/41) of the respondents would consider fetoscopic laser surgery (FLS) for early‐onset type I sFGR, whereas 41.5% (17/41) would offer either FLS or selective feticide, and 12.2% (5/41) would exclusively offer selective feticide. For early‐onset type II and type III sFGR cases, 25.9% (21/81) and 31.4% (22/70) would exclusively offer FLS, respectively, whereas 33.3% (27/81) and 32.9% (23/70) would exclusively offer selective feticide. Conclusions: There is significant variation in clinician practices and attitudes towards the management of early‐onset sFGR in MCDA twin pregnancies, especially for type II and type III cases, highlighting the need for high‐level evidence to guide management

    Core Outcome Set for GROwth restriction: deVeloping Endpoints (COSGROVE).

    Get PDF
    BACKGROUND: Foetal growth restriction (FGR) refers to a foetus that does not reach its genetically predetermined growth potential. It is well recognised that growth-restricted foetuses are at increased risk of stillbirth, foetal compromise, early neonatal death and neonatal morbidity. Later in life, they are prone to health problems, including increased risk of cardiovascular diseases and neurodevelopmental disorders. Interventions for preventing and treating FGR have been studied in many trials, but evidence is often difficult to synthesise and compare because of differences in the selection and definition of outcomes. To enable future trials to measure similar, meaningful outcomes, we are developing two core outcome sets (COS) - one for prevention and the other for treatment of FGR. METHODS: We will review the literature to identify previously reported outcomes. An international panel of relevant stakeholders who have experience of FGR (parent or carer of a baby that was growth restricted, health professional involved in the care of mothers and babies affected by FGR, a person with expertise in FGR research) will rate the importance of each of those outcomes in a series of three sequential online rounds of a Delphi study. Participants will be able to add items to the proposed list in round 1. A final face-to-face consensus meeting will be held with representatives of each stakeholder group at which a final list of outcomes for inclusion in the COS will be agreed. DISCUSSION: The development of COSs in FGR will ensure the collection and reporting of a minimum dataset agreed by stakeholder consensus and will reduce inconsistencies in the reporting of outcomes across relevant trials. Such standardisation in the reporting of outcomes will improve synthesis of evidence and generalisability of knowledge in the future by reducing heterogeneity in outcomes between trials and thus improve the results of systematic reviews and meta-analyses. Ultimately, we hope that the COSs will lead to an improvement in the quality of evidence-based clinical practice, enhance patient care, and improve the quality and consistency of research. TRIAL REGISTRATION: Not applicable. This study is registered in the Core Outcome Measures for Effectiveness (COMET) database

    Neonatal Survival After Serial Amnioinfusions for Bilateral Renal Agenesis: The Renal Anhydramnios Fetal Therapy Trial

    Get PDF
    IMPORTANCE: Early anhydramnios during pregnancy, resulting from fetal bilateral renal agenesis, causes lethal pulmonary hypoplasia in neonates. Restoring amniotic fluid via serial amnioinfusions may promote lung development, enabling survival. OBJECTIVE: To assess neonatal outcomes of serial amnioinfusions initiated before 26 weeks\u27 gestation to mitigate lethal pulmonary hypoplasia. DESIGN, SETTING, AND PARTICIPANTS: Prospective, nonrandomized clinical trial conducted at 9 US fetal therapy centers between December 2018 and July 2022. Outcomes are reported for 21 maternal-fetal pairs with confirmed anhydramnios due to isolated fetal bilateral renal agenesis without other identified congenital anomalies. EXPOSURE: Enrolled participants initiated ultrasound-guided percutaneous amnioinfusions of isotonic fluid before 26 weeks\u27 gestation, with frequency of infusions individualized to maintain normal amniotic fluid levels for gestational age. MAIN OUTCOMES AND MEASURES: The primary end point was postnatal infant survival to 14 days of life or longer with dialysis access placement. RESULTS: The trial was stopped early based on an interim analysis of 18 maternal-fetal pairs given concern about neonatal morbidity and mortality beyond the primary end point despite demonstration of the efficacy of the intervention. There were 17 live births (94%), with a median gestational age at delivery of 32 weeks, 4 days (IQR, 32-34 weeks). All participants delivered prior to 37 weeks\u27 gestation. The primary outcome was achieved in 14 (82%) of 17 live-born infants (95% CI, 44%-99%). Factors associated with survival to the primary outcome included a higher number of amnioinfusions (P = .01), gestational age greater than 32 weeks (P = .005), and higher birth weight (P = .03). Only 6 (35%) of the 17 neonates born alive survived to hospital discharge while receiving peritoneal dialysis at a median age of 24 weeks of life (range, 12-32 weeks). CONCLUSIONS AND RELEVANCE: Serial amnioinfusions mitigated lethal pulmonary hypoplasia but were associated with preterm delivery. The lower rate of survival to discharge highlights the additional mortality burden independent of lung function. Additional long-term data are needed to fully characterize the outcomes in surviving neonates and assess the morbidity and mortality burden
    • 

    corecore